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Abstract

A tunable diode laser is used to investigate the V8 vibrational band of Sulfuryl Fluoride in the

11 g region. Although the absorption spectrum is doppler-limited, the resolution is high
enough to observe previously unresolved lines and therefor determine the band center and other
excited state molecular constants.

The band constants are determined by a least squares fit computer program using an S
Reduced hamiltonian to model the molecular vibration-rotation. The molecule is slightlyI1 aspherical and requires curve fitting to thousands of lines.

The S Reduced hamiltonian, as well as other pertinent theoretical topics are discussed.
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Chapter 1

Introduction

ft The advent of infrared lasers h's led to unprecedented high-resolution spectroscopy in

the middle IR region. The importance of the laser in spectroscopy is evident in the study of the

I molecule Sulfuryi Fluoride (SF20 2 ). The availability of high-resolution data allows us to

observe previously unresolved structure, and for the first time, observe such effects as

asymmetric K splitting and the impact of nuclear spin statistics in this molecule, as well as

determine band centers and upper state molecular constants to a high degree of accuracy. In this

experiment a tunable diode laser (TDL) was used to map the spectrum of SF20 2 in the 11ii

range.

1 1.1 Previous Studies of SF202

Mic-owave studies of SF202 have revealed seven lines in the 20 to 30 thousand Mhz

I region. Six of these lines were assigned to the rotational transitions J = 1 --) 2 and J = 2 - 3

of 32SF202 and one line to the rotational transition J = 1 - 2 of the 34SF202 isotope. With

I this data, and assuming C2v symmetry, the structure of SF20 2 was determined and the ground

state molecular constants estimated. Microwave studies have also determined that SF202 Is

slightly asymmetrical. However, due to the smallness of deviation from sphericity of SF20 2,

3 the b and c axes (principle axes of intermediate and greatest moments of inertia respectively)

could not be unambiguously assigned to their respective molecular axes. In addition the

U microwave data obtained was not detailed enough to determine molecular distortion parameters

[141.
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P There has also been infrared spectroscopy performed on SF202 in which band centers of

3 fundamental and combination vibrations have been recorded, but the transition lines themselves

were unresolved [11 [121 (see Figure 1).

ERI
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I Figure 1- Infrared Spectrum of SF202 between 250 cm "1 and 4000 cm-1 . From [121 [p. 5711.

I This spectrum, recorded in 1960, fails to resolve any but the coarsest of features. This

means that, in the V8 vibrational band for example (depicted between the arrows in Figure 1),

there are approximately 250 transitions and thousands of strong lines that lie entirely below the

instrumental resolution of the times. The power of our technique lies in our ability to take a

segment of this previously recorded spectrum and resolve completely all the transitions and

strong lines. In particular, our work resol'.cs transitions over a wide range extending from J = 30 of

the R-branch to J = 16 of the P-branch of the V8 vibrational band. The significance and

7
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resolution of our IR data (see Figure 2 and results in Chapter 5) is apparent when compared to

the previously recorded iR spectra shown in Figure 1.

In addition to our achieved resolution (which is doppler-limited to about 60 Mhz at

room temperature), we have identified thousands of lines using a computer generated least

squares fit. Using the fit, we have been able to clarify the assignments of the b and c axes to the

appropriate SF202 molecular axes and determine the excited state inertial constants A, B and C,

the V8 band center, and the excited state distortion parameters. None of this information had

been previously available except for the V 8 band center, which had been estimated (to the

nearest wavenumber) at 885 cm- 1. To illustrate, some of the measured values from this

experiment are given in Table 1.

Table I

nMeasured Excited State Band Constants and V8 Band Center

Band Constant I Measured Value Estimated Standard

(cm -1) (cm-1) $ Deviation (cm- 1)

Band Center 887.2185 .2513x10-3

A .1710 .2376x10- 5

B .1691 .2624x10-4

C .1681 4281xlO"4

I
I
I
I
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3 1.2 Thesis Organization

The purpose of this thesis is to identify completely the P and R-branch lines covering a

1 15 cm -1 range around the Q-branch of the V. vibrationzl band of SF202, and determine the

upper state rotational and centrifugal band constants as well as the V8 vibrational band center.

I Normally one might expect to perform an experiment to check the validity of

I theoretically derived parameters. In this experiment we have the opposite situation. Here we

are empirically deriving values from observed spectral frequencies which are then placed into

3 the theoretical equation- This technique is described as a reverse stochastic process in which

asymmetric rotor quantum numbers are assigned to observed transitions using available theory.

I Once quantum nurnbers; are assigned, band constants are determined by curve fitting using a

5 computerized least squares routine[30l. The curve to be fitted is the S-reduced hamiltonian

derived in Appendix A.

There are several steps in identifying and fitting the S1707 spectra. These steps are

covered in the various chapters of this thesis.

U Chapter 2 outlines the basic theory of asymmetric molecules and establishes the

3 notations and conventions used in the thesis.

Chapter 3 explains the experimental -etup and the procedure used to collect the spectra.

I Also covered is the application of the basic theory to the interpretation and analysis of the

experimental spectra.

Chapter 4 covers error analysis.

3 The final results of the experiment are given in Chapter 5. Over 4600 lines were fitted

by the least squares fitting routine[30]. Instead of listing all 4600 linesseveral representative P

3 and R-branch transitions are presented in graphical form.

The development of the S Riuned hamiltonian and the wave equation solution for the

I symmetric rotor are the subjects of Appendix A and B resp,ctively

1
10I



Chapter 2

Basic Theory

The original contribution of this the-is begins in Chapter 3 on page 36. But first, the

basic theory of as-mmetric vib-rotors is given in this chapter, as follows.

3 2.1 The Rigid Rotor-Harmonic Oscillator Approximation'

,I To begin determining the band constants and fitting the observed spectra, it is necessary

i to use any good approximation that is available. Oftentimes approximations can lead to

reliable estimates of such quantities as band constants or transition spacings, which can then be

inserted into a least-squares program to begin the fitting procedure from which accurate

molecular parameters are determined- Estimated quantities can also serve as a reliable means of

I calculating errors and ensuring the fitting process stays accurate.

The best approximation is called the riid rotor-harmonic oscillator approximation.

This approximation begins with the hamiltonian below (see Appendix A)

2 p z-P) IH=(P X-- X)  -V 2- - 3 V  i
I -- 21 xx21 21:

U -. k

Px, Pv and Pz are components of ihe total angular momentum, Px, Py and Pz are components of the

internal angular momentum, pk, is the momentum associated with the kth normal vibrational

3mode, and V represents the overall molecular potential. The first three terms represent the

I
1The theory of Section 2.1 is taken from the folkwing References.131 (pp. 7-91; 121 [pp. 83-841; 1251
[pp. 266-2671; [71 [pp. 28-341.
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I rotational energy and the interaction of the rotatioinal and internal angular momentum T-he last

I two terms are pure functions of the molecular vibrations.
p One can make further approximations b% neglectng the internal (vibrational) angular

I momentum and approximating the vibrat-onal part ef the hamiltonian as a harmonic osziLator

potential which can be solved exactly- In this w~ay the rotational and vibrational energies are

I com~pletely separable and are represented by~ the entergy levels of a rigid rotor and a harmontc

I oscillator- In this experiment the energy solution to the vibrational part ofl the hamiltonmn is
represented by the band center V0 Th remaining frotatio.nal) part of the hanultonian is the

problem we m~w -solve.

The energy levels of a rigid rotor arc iound by safhang the Schroedinger equabion;

H=~~.e Ev j NT .,7 (2)

where, with all the above approximations, we now have

where J now svnmbo-lizes the total angular roxn ,.c-tua and I Jdesignates thew ng7,d momnrt of inemta

about the indicated axis. An asymmetric top is deffired OF the relation

IThis relation zroves teK ,fenera rotrani.aaresuftcompl =tes

_z'-r m n -& -ntu rn s p t rfx e
riiIoo pcnm ;-cth-t-%la e-p-oMo a.nzpntu te

state. However, the proection of j on a n~~~~xdaxis is n,% longer Constant and thienefore we

can not use SN toi pcify the staie Ir.sca d we croatc a pjaameter t.- ind-cate vanous& 1 d egresW

I deviation fromn thne pmti rolae faxis oil svin s the axis of least moetof anertzCa)



U

and symmetric oblate (axis of symmetry is the axis of greatest moment of inertia) limits. The

- H most common para:neter is the asymmetry parameter

_ 2B-A-CI K- A-C

which varies from -1 for a prolate symmetric top (B=C) to 1 for an oblate symmetric top (B=A).

The quantities A, B and C are constants inversely proportional to the least, intermediate and

-- greatest moments of inertia respectively. They are defined in Appendix B (see p. 117). Energy

levels are specified by the symbol J K 1IK I" This level represents a rotational level of J which

I in the limiting case connects a prolate symmetric top level of K _1 with an oblate symmetric top

level of K1 (see Figure 3).

We now expand the asymmetric top eigenfunctions in combinations of symmetric top

* basis functions

U n jM(OIO,,) = JA kIJKM) (6)
k

3 Where IJKM)represents the symmetric top wave function of Equation (B-15) (see p. 117).

Substituting Equation (6) into Equation (2) yields

A k HR!JKM) = E A kJKM) (7)
*k k

I
I

" 'U 13
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I
U

The energies are the roots of the (2J + 1) x (2J + 1) secular determinant

IH KK' - E5KK'I = 0 (8)

whereU
HKK' = (JK'M!IHRIJKM) (9)

At this point it is helpful to investigate the symmetry properties of the wave functions.

For this we resort to group theory. In group theoretical nomenclature, all rigid rotor wave

functions belong to representations called the external rotation group. These representations are

I characterized by J and M and correspond to an infinitely large amount of possible rotations of the

space-fixed system that leave the energy invariant. The symmetric rotor, described by the

body-fixed axes, belongs to the internal rotation group D ., characterized by the quantum

3 numbers J and K. For the asymmetric rotor, the hamiltonian has the character that a rotation of

1800 about any axis leaves the hamiltonian unchanged [see Equation (3)]. The asymmetric top

3 is therefore classified as a member of the point group D , , also known as the Viergruppe wV)

group. This group is characterized by twofold rotations about the a, b and c axes denoted by

i C2(a), C 2(b) and C 2(c) and the identity E (see Table 2).

I
Table 23 Group Characters for the D2(V) Group. From [251 [p. 2631.

Group Operations Quantum
Numbers

E C2(c) C2(b) C2(a) K_1,K

1 1' 1 1 ee
1 1 -1 -1 oe
1 -"" 1 -1 00

1 -1 -1 1 eo

15I



1 Here a, b and c represent principle molecular axes of least, intermediate and greatest

moments of inertia respectively. They correspond to the inertial constants A, B and C defined in

Equaion (B-I(' (see p. 117). The letters "e" and "o" in Table 2 stand for even and odd

3 Irespectively.

Now we examine how the JJKM) transform under the operations of the V group. First

i we note that for SF202, K = -.5 [14], which approaches the symmetric prolate limit. Therefore

it is natural to identify the X, Y, Z axes with the b,c,a axes respectively (see Table 3).

3 Table 3
Possible Identification of Principle Axes a, b, c with Body-fixed Coordinates x, y, z.

From 1251 [p. 2681.

I Representation __

Body-fixed Ia jIb Inc3 coordinates _ _._

x b c a
y c a b

z a b c
amost natural limit of a prolate symmetric rotor

b most natural for a rotor intermediate between the two limiting symmetric rotor cases
C most natural limit of an oblate symmetric rotorI
The effect of the V group operations on the IJKM) is determined by their effect on the Euler

angles. We use the direction cosine matrix 0 F(0,6,X) of Table B-1 to determine the effects of

5 each of the four operations on the Euler angles. The results are summarized in Table 4.

I
I
I

ill 16



Table 4
Cartisian Coordinate and Euler Angle Transformations Under Operations of the D2(V) group.

From [25] [p. 269].

Group Operation J Cartisian Coordinate Euler Angle
Transformation Transformation

E JX- ____0____o__

_ _ _ _ _ _ _ _ _

z -z jX z X
C2(a) ;x-Z IX 0 0

I Y -Y I 0 "  0

UZ-z 7-t_+ X 

C2(c) x -4-x 40+ _III __ _ _ __Y _ _ __o[ z- -z X - -> 7E-

C2(b) x -4x __.. ____+ _

I i Y'-4-Y 0--4n- 0"I I z-*-z Io -z-e
z z x--)-x

In particular, we findI
i K(E ) = (_

c..[IJKM)o eiM ,e e1) KJKM)2(a)'tt

C(JKM)o-e iM(6+n)( (r)e -(- 1) J-KJKM) (10)

C 2( b)IJKM)o : e iM(0+)E (,-,)e iK(-X) 1) J!TKM)

3 The relations in Equation (10) tell us that we cannot use the expansion (6). Instead we

must construct a basis from linear combinations of J ,± K ,M) whose symmetry causes them to

transform the same way under the operations of the V group. If we define

IKMs)= -flJKM) + (- 1)J,- K,M)] for K 0 and s : 0,1

17I



I

I and

Ii OMs) W ( P M) = IJOM) for K =O ands = 0 (12)

then we get

I EiJKMs) = IJKMs)

2(a)IJKMs) = (- 1) KJKMs)

J-K+s
c 2( )IJKMs) = (-1) JKMs) (13)

I 2 (b)jK s = (- JKMs

Hence the factors of Equation (8) are divided into four sub-blocks and the eigenvectors and

Ieigenfunctions of each sub-block correspond to one of the symmetry operations of the V group (see

* Table 5).

Table 5
Asymmetric Rotor Symmetry Operations. From [25] [p. 271].

IiSecular Symmetry Designation
Determinant _______

iK s Jeven Jodd
E+  Even 0 A Bz

E- Even I Bz A
0 +  Odd 0 Bx By

0- Odd 1 By Bx

I
I
I

18I



Now we must calculate the matrix elements of HR that appear in our sub-blocks. The

commutation rules [J J ]= eijk i k give usI
1

(JKMIJ xlJK ± 1,M) = jI[J(J + 1) - K(K + 1)] 2

I2

(JKMIJ yjIK + 1,M) = T 2[J(J + 1) - K(K ± 1)] (14)

(JKMIJj'JKM) = K

which imply

(JKMIj2 'JK'M) = X,(JKMIJ xjJK" M)(JK" MiJ xJK'M) (15)
*K"

I 1[J(J +1) - K 2 KK. + J(J+1) - (K I)] 2[J(J + 1) (K )(K 2)] 2

K- + _J - K, K,_±

Similarly

I (JKMj2 JK'M)= 1[J(J + 1) - K 2]8KK.

1 l[J(j + 1) - (K + i)][J(J + 1)- (K ± 1)(K ±2)] 28KK2 (16)

(JKM;:JK'M) = K2KK. (17)

and finally, for an asymmetric rotor in the prolate limit

19



H =ji(B+C)[(j+1)-Fii]+AK 2 }8K

i + !(B-C)[J(J+)-K(K + ;,i " +1)- (K ± 1)(K 2)] 2

Note that for a prolate symmetric top (B Q C, Z .i ignl

Now let G and p be scalar quantitv. ein we can say

R(aA+p,oB+p,oC+p) = p)ja p)JC
(A 2 2 2 2 B2 + ( C +)2

= G(A Tb +bJa Jbc)PJaJbJc) R(ABC) PJ (19)

with the eigenenergies

~E =+, +Pjj + 1)

(aAEp,aB+p,aC+p) (abc) (20)

Now let

GF A-2C (21)

I and

-(A+C)
(A-C) (22)

which imply

2
II

20I



(YA +p= 1

(2B- A-C)
(A-C) (23)

aC+p=-1

a! : give us, for Equaticn (20)

2 (A C)

E E E 2 E + 1) (24)(aA+p,aFB+p,aC+p) (i,c,-i) (A-C) (abc) (A-C)

or

E(abc) =(A + c)J(J + 1) + 2(A - C)E (25)

(a2c 2 (25

We can now find the energies E( abc) of the rigid asymmetric rotor as follows; we still must

evaluate the secula: dcterminant in Equation (8), but wve must first identify to which group

operation the JK _K 1 level be' )ngs (see Table 2). In Equation (8), HKK. -ow refers to the

hamiltoniar in Equation (18), and instead of D KM) use 'JKMs ) from Equation (11) or

Equation (12). To find E , use the same proccdure, but substitute .- 1, B = K and C =-1.

2,2 Line Strengths 2

We begin our discussion using the rigid rotor-harmonic oszillator approximation. This

approximation assumes the hamiltonian can be written as

H=H v+H R (26)

2The theory of Section 2.2 is taken from the following References. [31 [pp. 94-951, [261 f p. 321; [251
[p.82,2901.
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and therefore the vibrational and rotational energies as

E = E v + E r (27)

This type of separation also leads to the form of the total wave function as a superposition of

two different wave functions:

ly VR = X VV'R (28)

To find selection rules and line strengths, the matrix elements of the electric moments connecting

'he vibrational-rotational states VR to V"R" within the same electronic states are considered.

Microwave studies have shown that, for this molecule, the permanent electric moment lies along

i the axis of symmetry, which for z r d~up representation, can be designated as the a axis (axis

of least moment of inertia). If we call this axis the z axis, then both sets of axes: xy,z and

X,Y,Z, representing axes fixed in the molecular and lab frames respectively, are needed to

formulate the problem.

The electric moment relative to the body-fixed z axis can be written as

MZ (M 0 + JQk+ (29)

Qk = 0

kQ=

where (M is the permanent electric moment and k is the kth normal coordinate of the

vibrational movement.

The component of the electric moment along the lab-fixed Z axis would be

M z = M x cos xZ+ M COS yZ + M zCOS zZ (30)

m v ,ere the direction cosines between the two coordinate systems are functions of the rotational

coordinates alone. Generalizing, we say

I
ll 22



I

F= .Fg(oox)M g .F=X,Y,Z g=x,y,z (3)

I 1Fg (O,OZ) are the direction cosines of the rotating molecule whose molecule-fixed frame is

described by the Euler angles 0, o, ;.

The matrix elements of the electric moment are

I (V'R'IM VR") - .VdT (32)

I Substituting Equation (31) and the generalized form of Equation (29) into Equation (32) enables

the separation of Equation (32) into two independent parts:

(V'R"M F VR.")=X(Mg) J' I.FgV R-d=X(,Mg) (V'R" g 'VR") (33)

and

(V'R N 'Rd ZJV,,.-QkvJ .(V'N gIv")(R R..

g k k g
1 (34)

RcI)Fg i!' represents the matrix element in the F7-2;rection corresponding to a unit electric

moment along the g-direction associated with the change in rotational quantum numbers from

I R' toR " - As such it is independent of the vibrational normal coordinates of the system.
(V'iM '') are the matrix elements of the electric moment along g associated with a change

3 in vibrational quantum numbers from V' to V ". For the harmonic oscillator approximation the

eigenfunctions, the Hermite polynomials, are odd, so the matrix elements are only non-zero for a

change in vibrational quantum numbers of AV ± 1. Such transitions are called fundamental

transitions because they are the most intense. To obtain oertone transitions for which Av > 1

or combination bands in which the quantum numbers associated with more than one normal mode

of vibration changes, it is necessary to include higher order terms in the normal mode expansion

(29). Coupling between normal modes caused by anharmonic terms is zero unless v=v" (direction

23



cosines are even functions). Equation (33) represents the matrix elements for pure rotational

spectra, that is, transitions between rotational states in the same vibrational level. These types

of transitions gi e rise to microwave spet.tra, and are functions of the permanent electric moment

of the molecule.Equation (34) represents the matrix elements for simultaneous changes in both

vibrational and rotational states.

In the ana!ysis of the vibration-rotation spectra, absolute intensities are not necessary,

only the relative intensities are important. Therefore it is not necessar-y to know the exact form

of (Vt IM g8V"), only that it is non-zero. Hence we are left with the quantity

J RI% i" 'I the line strength, which along with weight factors to be discussed later,F,g g "

defines the relative transition intensities.

2.3 Symmetric Rotor Selection Rules3U
Before we attack the transition intensities, we first address the selection rules by

examining the matrix elements (R' fg R") for an asymmetric rotor. The selection rules for a

slightly asymmetric vibrating-rotating molecule can be best understood by first considering the

selection rules for a symmetric rotor. This is because for a s} mmetric rotor, K is a good quantum

number (see Appendix B) and we can deri% e exact selection rules for K in the symmetric limit.

We start by realizing that angular momentum %%ill transform from the lab frame to the

fixed molecule frame exactly as the coordinates transformed under rotation

P 9 = jo Fg Oo.x) PF (35)
F

Note that everything is done in the rcpresentation for ivhich the energy of the sy mmetric rotor

is diagonal in J and K. In this representation we have

3The theory of Section 2.3 is taken from Reference 131 [pp. 95-981;

24



(JKMIPJJ'K'M') = KS jj. KK. MM" (36)

and

(JKMIP JKM')=J(J+1)8 j*. KK. MM.

Consider

EP 2 [p2,4] 1p 4pD 2plc'p 2 + qp 4  (38)

I

Repeated apitonof the commutation rules. FPi'PJ1=- iijkPkgie

24 2 2(p2(D + <Ip2) 2p(p

This means that

(J'K' M P'CD - 2P ,D + DP' IJKM) = 2h('K'M ' ( D + PJKM)

£ -4h 2 ( "K'M'P(P- q))iJKM' (40)

which implies

h j2(J' 2-2'(J 1)(J i)- J2 (J + 1)]('K-M'CJKM)

=2h4 [I'(J'+ 1) + J(J + 1)j(J'K'MCDJKM)- 4h 2 (j'K'M'P(P- 4)JKM) (41)

For J' J the last term on the R.H.S. of Equation (41) van;shes. For the other factor on the

R.H.S. of Equation (41) we write

2[J'(J'+ 1) +J(J+I)] =(J'+J+1+('-J-- (42)

3 The term on the LHS. is factored to give

I
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I [J.'2(j..' 1)2-2j'(J )('i 2J)'j(.).JJ) (43)

resulting in

[(J_ J)2(J, j 1)2 (J.+ j W-1)2(J.- J) - K J'K'M' JKM)= 0 4

or

5 J if z~y-j)- 1 kpicK M 0JKM)= 0 (45)

For a non-vanishing matrix element one of the coefficient expressions must be zero. The first

term cannot be zero because, by assumption,J* J and J ,J 0. The second term is zero only if

I For J = J'. note that P - (D is a scalar overaor ard is therefore invariant under

operations generated by Pz and P-. Thereere we have

[7(p,(p. )1 =[p2, .)J=0 (-6)

I leading to the following matrix representations

0 = (J'K'M'1p 2 ,(P- ()lJKM) = ("KMI - AP - b))-(P- O))PJKM)

I
=(K*- K)(J'K'M[P - 4)IJKM) (47)

£ and

I
0 =(J'K'M'[P2,(P- ()DJKM) = (j'KM p2(p.) _( (b)P~jKM)I

-[J(J'+ 1) J( J + )JK'.MP l4) K.'- (4s)

2I
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Equation (47) and Equation (48) lead to nonvanishing matrix elements only for K'= K and

J'= J. Finally we construct :1perator (DFy ± iq)Fx, which together withP z and the

commutation relations used above, show us thatI
(J'K' M'1 )Fy ± i Fx JKM) = 8 P, KK,3 M',M± (49)

-which implies the selection rule AM = ± 1. Collecting the important results we have for

3 the selection rules for the symmetric rotor in the general case (V'M g V") are

SAJ = 0,+ 1 , AK = 0,± 1 (50)

1 2.4 Asymmetric Rotor Symmetry Considerations and Selection

pRules4

I The spectrum of the asymmetric rotor will be complicated because the selection rules are

more complex than in the symmetric case. This is because of the increased number of energy

I levels and the arbitrary direction of t.:-e changing dipole moments. Despite these problems,

3 general statements can be made concerning selection rules for asymmetric rotors.

First, since total angular momentum is always conserved, even though the molecule is

now asymmetric, the transformation matrices for the asymmetric case are diagonal with respect

to J (as they are in the symmetric case). The seiection -ules for J are therefore the same; that is,

AJ = 0,+ 1. The selection rules for K _1 and KI can be obtained by examining the symmetry

of the molecule in question.
The rotational behavior of a molecule of C 2 v symmetry depends on the ellipsoid of

3 inertia, which is symmetric with respect to a rotation of 1800 about the principal axis even

though the molecule itself, being asymmetric, may not be symmetric with respect to such a

4The theory of Section 2.4 is taken from the following References. [21 [p. 93]; 131 [pp. 106-1071; [81
[pp. 214-2161.
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rotation. The rotational wave function 'JK K is either symmetric or antisymmetric with

respect to such a rotation.

For an asymmetric rotor in the limiting prolate case, symmetry of the wave function

with respect to a 1800 rotation about the a axis (axis of least moment of inertia) which is the
±iK y'

axis of symmetry, depends on the angle X as in e . Therefore N JK K is symmetric

when K_1 is even and antisymmetric when K_ is odd. Similarly, in the limiting oblate case,

JK- K is symmetric with respect to rotation about the axis of greatest moment of inertia

(c axis) when K is even, and antisymmetric when K is odd. Since successive rotations of

1800 about all three axes bring the molecule back to its original position, the symmetry for a

3 rotation about the b axis is the product of the a Lnd c axis symmetries.

Now if the changing dipole moment lies along the a axis, the matrix element, on which

the relative transition intensities depend, is of the form

IR' IFaIR"=fW'J'K' K' OFa VJ"K" K" dT= fJ''K' K' Jcos (Fa)y *JK K'' dc

S(51)

where J'K' K' and represent the quantum numbers of the initial and final

rotational states, I is the dipole moment and cos(Fa ) is the cosine of the angle between a and

i some space-fixed axis. Since cos(Fa) changes sign for a 1800 rotation about the c axis for

example; then VJ'K' K' -4J"K" K" must also change sign for the matrix element to be non-

zero. Otherwise (R' lFAIR") itself would appear to change sign, and since the ellipsoid

I moment of inertia is symmetric with respect to this rotation, this would imply the matrix

element would have to be equal to zero to avoid a contradiction. Therefore transitions of this

type can occuronly when K'1 and K" are of different parity. A similar argument for rotation

about the b axis shows that K'_I and K"_1 must be of the same parity. This type of procedure

is repeated for changing moments along the b and c axes to establish selection rules for all cases.

I
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Symmetry properties for asymmetric wave functions are summarized in Table 6 and selection

3rules in Table 7.

I
i Table 6

Symmetry Properties of Asymmetric Rotor Wave Functions. From [21 [p. 941.

Designation I Behavior with 180' rotation about principle axes

K K a b c

3 (least moment) (intermediate (greatest moment)

_moment)

e e + + +

3 e o +

0 0 +

Co e +

Table 7

USelection Rules For Asymmetric Tops. From [2] [p. 941.

Axis Parallel to Allowed Transitions

Changing

I Dipole Moment ... .

a (least) ee -- eo

1 o <- oe

b (intermediate) ee <-4 oo

eo (>- oe

Sc (greatest) ee (-4 oe

i_ _oo --> eo
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3 Briefly, we see that the selection rules for symmetric rotors, AK = 0,± I have been
relaxed. In general we now have AK = 0,+ 2,± 4,... or AK = 0,± 1,± 3,... that is, AK

i and AK I are restricted to even or odd changes. However, not all numerical combinations of

AK_ and AK 1 are possible since K_I + K 1 = J for even levels (even levels defined as

I K_1 + K 1 + J = even) and K_1 + K 1 = J + 1 for odd levels (odd levels defined as

SK_ 1 
+ K 1 + J = odd).

2.5 Relative Intensities of Asymmetric Rotor Transitions From the

Direction Cosine Line Strengths5

The line strengths !(R'!J (DFgIR")j - mentioned earlier were, strictly speaking,

direction cosine matrices of basis functions for a symmetnc rotor described by the Euler angles. To

fdescribe the line strengths for an asymmetric rotor we just represent the asymmetric rotor wave

functions as a sum of symmetric rotor basis functions which transform under rotation to the

degenerate pairs to which they converge to in the limiting symmetric cases. Hence, direction

3 cosine matri~os for the asymmetric rotor can be calculated from linear combinations of values of

(1) Fg which give the same symmetry.

I We will dctr.e transition intensities as the direction cosine line strengths as modified

3 by the fraction of mole, - available in the ground state of the particular transition. In the

rigid rotor-harmonic oscillator zapproximation this fraction is given by

fJK_ K fV (52)

I
5The theory of Section 2.5 is taken ( .n the fol!owir, References; 12] [pp.100-1011; [3] (pp. 105,

i 110-1111; [81 [pp. 210-2141.
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This approximation also assumes no coupling between vibration and rotation, which is

particularly true for low vibrational quantum numbers. Note we have also assumed all the

electrons to be in their lowest state. The fraction of molecules in a particular vibrational state of

I energy hv(n+-L2)' n=0,1,2,...is

I I n=0 L B J

For a multi-band harmonic oscillator it is

d

3 exp[ n M 1 -exp (--)

3 where d m is the degeneracy of the vibrational mode of frequency V m . Since there is a 2J + 1

degeneracy from the M-quantum numbers, we have for the fraction of molecules in a particular

3 rotational state (the asymmetry of the molecule splits the K-degeneracies of the symmetric

rotor)

(2J+)xp -E(bIJ
I where E(abc) is the energy given in Equation (25).

In our case, the V8 transition is non-degenerate and the ground state has the

vibrational quantum number n = 0. So in principle, we can write the intensity of a spectral

transition for a single band in the rigid rotor-harmonic oscillator approximation as

I
[1 31



--E ' 1
g( -exp -hV 'exp VR(abc) 1

'Rt  (J T Iv'R'l v"R"l 2

II VR, .-k-T
n L 3J

I where V'R' and V"R" stand for all the vibration.fl-rotational quantum numbers of the lower and

Iupper states respectively. gV'R' is the multiplicity of the lower state, which, since we assume

all the electrons to be in the ground state, includes only the nuclear spin statistics. E n(abc) is

3 the asymmetric rigid rotor energy from Equation (25), N is the number of molecules per cubic

centimeter and V is the transition frequency.

To compute relative transition intensities, we note that the denominator and the

3 constants in Equation (56) are the same for any given molecule. Also, since the frequency from one

end of a vibrational-rotational transition band to the other does not vary appreciably,

I (-exp k-h T) is essentially essentially constant for a given band. And, as pointed out earlier,

the purely vibrational part of (V' R"M F ") is not important for calculating relative

intensities as long as it is not zero. Therefore the relative intensities in a vibrational-rotational

3 band can be computed to a high degree of accuracy with knowledge of E n(abc)' the line

£ strengths and the nuclear spin statistics.

We finish the discussion of relative transition intensities by addressing the issue of the

3 nuclear spin statistics.

3 2.6 Nuclear Spin Statistics of SF2026

Anytime a molecule has two identical nuclei (same isotope of the same element) which

share the same electronic environment w ithin the molecule, the nuclear spins will affect the

6 The theory of Section 2.6 is taken from Reference 121 [pp. 102-1031.
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symmetry of the overall molecular wave function. The overall wave function can be

approximated as the product

3 T =e W v' RVT (57)

where "V e, 'V V R and N1 represent the parts of the wave function dependent respectively

I on electronic, vibrational, rotational, and spin coordinates. Naturally the behavior of IV T

3 with respect to any symmetry operation depends on the behavior of each of the four parts. The

electronic wave function, for most polyatomic molecules are in the ground state (and therefore

Ssymmetric) at room terpzrature, and the ground vibrational state for SF202 is also symmetnc in

the harmonic oscillator approximation, so the symmetry of the total wave function for this

I transition in the SF20 2 spect-z is determined only by the product of the rotational and nuclear

spin functions. We can then write, for symmetry purposes,

I'VT= JK K 'V(58)

If, in a molecule, two equivalent nuclei occur, the molecule will have a twofold axis or

symmetry, and consideration of the nuclear spin statistics with respect to an interchange of

5 identical nuclei coordinates about this axis must be considered. In SF20 2 we have two pairs of

identical nuclei, but since the oxygen nuclei have zero spin, they will not contribute to the spin

3 statistics. Only the two fluorine nuclei, each of which has a spin of 1/2 , will affect the nuclear

spin states.

The nuclear spin function can be either symmetric or antisymmetric, and is formed by

3 taking linear combinations of the spin functions of each individual nucleus, that is

I
I
I
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alnOm(1)Gm.(2) mm = M' (symmetrc)

3IV (Y m(1)Cnm'(2) + a m(1)a m(2) (symmetric) (59)

I= am(1)a m.(2) - am.(1)am(2) (antisymmetric)

where a m(l) and a m(2) are, respectively, the spin states of the first and second identical

nuclei with projection m of spin I on a space-fixed axis. As usual, m takes on the 21 + 1 values

IJ - 1,1 - 2,...,- I. Hence there are 21 + I combinations possible for the first equation of

3 2
(59) and [ 21+1) 2 I ) possible combinations each for the last two equations of (59). This

gives us a total possible number of symmetric spin functions of

N sym = (21 + 1)(I + 1) (60)

and a total possible number of antisymmetric spin functions of

antisym = (21 + 1)I (61)

A molecular rotation of 1800 about the symmetry axis (a axis) in SF20 2 amounts to a

3 complete exchange of molecular coordinates of the two fluorine nuclei. Since only the fluonne

nuclei (which are fermions) contribute to the spin statistics, IV T must obey Fermi-Dirac

statistics for the exchange. Hence we must always pair an antisymmetric nuclear spin function

with a symmetric rotational function to keep the nature of 11f T antisymmetric. Similarly, a

I symmetric nuclear spin function will always be paired v ith an antisymmetric rotational wave

g function for rotation with respect to the symmetry axis.
1

Since I = for the fluorine nucleus, Equations (60) and (61) tell us we have a total of

I three symmetric and one antisymmetric nuclear spin functions. So, according to Equation (56),

rotational wave functions for SF202 marked with a "-" under the least moment column in Table 6
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will have (all other factors aside) three times the intensity of those marked with a "+". These

results are tabulated in Table 8.

Table 8
Nuclear Spin Statistics for SF202

I I 'VJK _K 1  Symmetry with respect I Statistical Weight

K_ I1 to 180° rotation about
axis of symmetry (a axis) I _

e e symmetric
e o symmetric 1
o o antisymmetric 3
0 e antisymmetric 3

3
I
i
I

I

I
I
I
I
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* Chapter 3

3 Experimental Procedure

I In this experiment, a tunable diode laser was used to generate laser light in the 11 .

3 range to observe the SF20 2 spectral profile. The laser light was transmitted through a 150 cm

absorption cell and the resulting signal was chopped at 500 Hz before entering the detector. "1,he

spectral trace was recorded on a personal computer (PC).

1 3.1 Experimental Description

I
The layout of the experiment is depicted in Figure 4.

I
I
U
I
I
U
I
I
I
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I DiffusionI I~eoe'a''l! I  Pump

! i c H II Ba Lns
i Tunable Diode

Laser
Spectrometer

/C')--,II
U_ CL15

CU.2- 150cm

Recorder

Figure 4---Experimental Layout

The source is a small (400 g1 x 200 g ) crystal chip of the Pb-salt family with a typical line width

of a few megahertz [161 [p. 9451, [151 [p.26951. The chip is mounted in a refrigerated dewar (cold

head) and is part of an overall laser system. This system is a Laser Photonics model LS-3 laser

3 spectrometer. In addition to the laser source, the spectrometer includes a HgCdTe type, liquid

nitrogen cooled detector with low-noise amplifier, a cryogenc temperature stabilizer (CTS); a

3 laser control module ( LCM ); a grating monochromator; and various optics (see Figure 5).
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Aperature ci~Slide ae ol

3 Figure 5-Tunable Diode Laser Spectrometer. From 1161 1p.9,31.

I ~ ~~~~The laser is cooled by a OH1-Cry ogenics model 22C cryodyne rfrigerainsse.I

g operates on a high purity, closed He gas expansion cycle, and can cool the iaser dlown to a

= temperature of I1=1K . The eTS provides tempc-rawure stabilization of the laser cold head to the

3 order of less than a millikelvin. At cryogenic temnperatures it also provides a convenient and

accurate temperature indicator for the range of operation of this experiment. Although tne cold

U head is a closed system, interior outgassing necessitated periodic evacuation. The vacuum was

3 maintained by a liquid nitrogen cold trapped Varien diffusion pump ope~rating in tande .with a

standard roughing pump.

3 The LCM provides cur-ent control of either positive or negative polarity to the laser.

The current can be adjusted from zero to a limit of 2 Amps at a continuously ad- istable rate from

3e to 10 - Amps/sec.

3 The grating monochromator provides two functions. It gives absolute frequency

calibration to within 0.5 cm ~,and, by varying the slit vidth, it can act as a variable frequency

3bandpass filter (-0-5 cm -- de) The latter function is necessarv because the laser emis
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I multiple modes, and high resolution ecp-troscopy is performed i-ith ony one mode at a time 1161

3 (p. 9481.

This method of using the monochromator and the CIS for coarse tuning and the La.M for

fine tunir- alowf z irrtcd turing range of about i to 2 cm- - The tuning behaor results from the

dependence of mod& frequencies on b&th thu energy bandgap and nae refractive index of the crystal

1161 p.9471.

ct The SF20 2 sample is stored at low pressure in a 150 cm stainless steel cylinder with AR

coated ZnSe windows. The purity of the sample is not known.

Scans were recorded on a computer %-.ith the help of the sof tare package that c e with

the Stanford Research Systems model SR510 Lock-in amplifier.I
S3.2 Conduct of the Experiment

From earlier experiments we knew the P and R-branches oi the V-ibration2l band

would be in the 835cm - region 1il1. 112. w'e ordemed laser crystals which were des&-ed to be

I tunable in this region. Once the laser crystals were mounted in the cold head, all modes of the

5 laser output in this particular fi'xqueno- range .%ere identified by lring. the mooch romator to the

approximate wave number and using the CTS to adjust the temperature of the laser.

SThe laser outrut was obterved on the osilos-cope whi!e thei LCM was used to ramp the

current over the entire current range. Oh thyme ;scil la.er mro-des wh s-e t.ransmxsson

I profiles were free of mide-heps otr othr irregulanti,. %rcp se!cted .We then repeated this

process at different temperatures antil we bad a celhextion of accepable modes for a particular

frequency selling of the monochro,,-atcr For anatheT freque-n,., the rnrw"rhro mntor was reset and'

the process repeated.

The procedure for actuall- re-ording s.ectra in:Aved three steps- At a fixed

I monochromator setting and a fixed co! hvaj teniperature. the laser current current was sw-ly

swept. First, we placed the cli contain:hg the SF202 s-amp!e in the beam ath. The cell was
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then removed from the beam path and the current sweep was repeated in the exact same manner.

This transmission scan provided a record of the pure laser power output profile. An air-spaced Ge

fabry-perot etalon (with a free spectral range of .05 cm -1) was placed in the beam path for the

final scan. The etalon would hopefully provide a means to establish a relative frequency scale for

each family of scans [161 [pp. 948-9491, [131.

The scans were recorded in a personal computer ih, a volts versus time Cartesian format.

This computer was hooked directly to the lock-in amplifier. The available software gave us an

option of selecting a sample rate varying from 20 to 2 Hz. A standard sampling rate of 2 Hz was

selected to balance the need for a high signal to noise ratio against the need for a reasonable

scanning time.

Initially the SF20 2 sample was placed in a cell 30 cm long at 300 mTorr. This cell was

small and easily handled, but did not provide for enough absorption to measure low J rotational

transitions. The SF202 sample was then moved to a cell 150 cm long and kept at 900 mTorr. The

pressure was gradually reduced to 150 mTorr to prevent saturation of the transition, and to ensure

we were well within the doppler-broadened regime. This combination of cell length and sample

pressure allowed the measurement of even the lowest J transitions, as long as the lines were not

obscured by other transitions.

There are basically two methods for recording spectra with a tunable diode laser [151 [p.

26971, [131. One method is by rapidly ramping tile current over the entire current range and

recording the output on a multichannel integrator. Since a multichannel integrator was not

available, we relied on the more conventional lock-in method. In this method the diode current is

slowly swept as the output is traced on the recorder (which in this case is the computer screen)

utilizing a step and integration collection method [131. After some trials, we decided that a

current scanning rate of 10-4 amps/sec was ideal for the type of scans we wanted and the amount of

detail needed. Faster scanning rates tended to smear away details while slower rates allowed

excessive thermal and vibrational noise to obscure tile spectra. The characteristics of the laser

also had an impact on the data collection. A crystal with a frequency scanning rate over about 480
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MHz/milliamp would force us to slow the current scanning rate below the level at which

unacceptable amounts of noise would creep in.

3.3 Data Analysis

i After a set of scans for a particular monochromator setting was recorded, a normalized

3 spectrum was then created by dividing the absorption scan by the transmission scan. It was

evident that the scans produced a distinct set of lines that appeared to be somewhat regularly

spaced, but before those lines could be unambiguously assigned to various SF20 2 transitions, it was

necessary to examine the available information on the molecule more closely.

Previous work in both the microwave and infrared regions has given reliable information

about the structure and inertial parameters of SF20 2. SF20 2 possesses C2v symmetry with a pair

of oxygen atoms and a pair of fluorine atoms attached to the central sulfur atom tetrahedrally (see

Figure 6) [141 [p. 41. From previous microwave work, the three inertial constants of SF202 were

found to be A = .1713 cm-1, B = .1693 cm "1, and C = .1686cm "1 [14]. The shape of the molecule

I suggests (and microwave measurements confirm) the assignment of the least axis of inertia (a axis)

to the symmetry axis (z axis) of the molecule. However since C and B are nearly equal, the

assignment of the b and c axes is not immediately obvious. Since the difference between the

greatest and least inertial constants is small compared to the value of the constants themselves,

SF20 2 is classified as a slightly aspherical asymmetric top, an uncommon type of molecule.

3 Consequently, the asymmetric splitting will be small, and the spectrum, while still

representative of an asymmetric rotor, will be simplified 1141 [p. 11.

The nine normal vibrations for SF20 2 are given in Figure 7 along with their symmetries.

4
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Fiue7--The Normal Vibrational Modes Of SF20 2 . From 1111 [p.1 7921.

Figure 6 (previous page)--Structure of SF202. From 1141.

The vibration we are studying has been described as the SF72 asymmetric stretch ( V band). The

I schematic of the transition is given in Figure 8.
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3~ 1st Excited State _______ ___________J=4

SF 2 Asymmetric - ______ -J=3

Stretch ( Vband) A ____ J=2
Vibrational Quantum I I______ I=

Number = 1 1 AlJ=O

I=
J=

IrudStt =

A J=J=4 A=-

V iura QuSeantu of thJ= rnito o h lihl shr oo F0

The pecrumis iv T ntioQand T-ransitiedon t rasitionruefo

asymmetric rotors A J = -1, 0, +1 re:,pcctively . Because SF202 is very nearly a spherical top, we

N should expect to see a distinct and well-defined PQR structure (l11 [p. 17911.
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i
Classically, a vibrational transition is connected with a change in the dipole moment of

the molecule. For a transition to be IR active, it must have non-zero matrix elements. For any

molecule of the form X2YZ2 having C2v symmetry, the only transition that is IR inactive is the

tortion oscillation of X2 against Y2 [261 [p. 2401. For SF202 this corresponds to the V 5 mode (see

Figure 7).

The vibrational transitions of molecules are classified into A, B, or C type bands

depending on whether the change in the dipole moment lies along the a, b, or c axes. SF20 2 does

have a permanent dipole moment of .228 + .004 Debye which lies along the symmetry axis (a

axis) and points in the direction of the two fluorine atoms 1141 [p. 51. Since the v8 asymmetrical

stretch of SF20 2 lies entirely in one plane, the only type of transitions we will observe will be

transitions represented by changes in the dipole moment along the a axis and/or the perpendicular

axis lying in the plane of the v 8 ,ibration. But furthr examination of the molecular structure of

SF202 suggests that, for the v 8 asymmetrical stretch, the strongest dipole moment change would

U lie in the axis perpendicular to the a axis in the plane of the vibration. Since earlier microwave

work was unable to resolve the b axis from the c axis, it was not immediately clear if we would

observe B-type or C-type bands in the spectra. In any case, we can eliminate A-type bands because

the structure of the spectra would be completely different from what we )bserve. Fortunately, it is

relatively easy to distinguish between B and C type bands by examining their Q-branch structure.

The Q-branch structure of a B-type band does not possess a strong central branch. Rather, the Q-

branch has a central minimum and its lines tend to overlap the P and R-branches. In contrast, a C-

type band of an asymmetric rotor in the prolate symmetric limit strongly resembles the

perpendicular band of the symmetric rotor. This band is characterized by a strong central Q-

branch of unresolved lines that are generally stronger than the P and R-branch lines [27] [p.88].

This stark difference in Q-branch structure bctween B and C type bands should help to determine if

the observed spectral transitions are B or C type.

Finally, we can use Equation (25) to estimate the relative spacings of the transitions, at

least for low values of J. If we neglect centrifugal distortion, sot the inertial constants for the
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excited state approximately equal to their value in the ground state, and note that A = C, we see

3 that each transition is separated by an interval E = (A + C) = 10.2 GHz.

So, based on the physical properties of SF20 2, we are looking for a well-defined PQR

structure, and a Q-branch reflecting the characteristic shape of a (B or C) type transition. The

transitions should be approximately 10.2 0Hz apart from one another and each transition should

have a fairly regular structure due to the slightly aspherical nature of the molecule.I
3.4 Determination of Relative and Absolute FrequencyI

To measure the spacing of the transitions, we initially used an air spaced Ge etalon with

a free spectral range of .05 cm "1. It was hoped this etalon would give a large number of closely

spaced peaks within the range of the scan, thereby allowing a frequency scale to be

established[13]. Assuming each peak was separated by .05 cm -1, a linear scanning rate for each

Bpeak interval was established by dividing .05 cn, - 1 by the measured time interval between each

5 etalon peak. The spacing of each transition was then determined by counting the number of etalon

peaks between the transitions, then multiplying the determined scanning rate by the remaining3fractional intervals. We were able to find that the interval between the major prominent features

of each scan to be around 10 0Hz, leading us to conclude that we were in fact observing transitions5 of the v 8 band of SF202. However, we also measured intervals of other scans with the etalon

I that ranged from 8 to 12 GHz. Apparently the free spectral range of the etalon was too large to

effectively linearize the diode scan. Other etalons %% ith smaller free spectral ranges were tried,

but were found to be too sensitive to vibrations to give consistent results.

This problem was corrected at the same time a way was found to determine absolute

frequency. Since the monochromator could not give a precise location in frequency space, SiH 4 ,

which has a structure that is very precisely known, was used as a reference [281. In the

experimental procedure, the etaion scan %as replaced with a simultaneous scan of both the SF202

5 sample cell and the Sill4 sample cell. The SF202 transitions vere now superimposed on SiH 4
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lines which had well known locations. Relative and absolute frequency could now be determined

by measuring the time interval between the nearest two SiH 4 lines which straddled each SF202

transition. This technique did not completely account for all the error of a non-linear diode tuning

rate, but results were much more self-consistent, and more consistent with the theoretical

approximations. (see Table 14).

5 3.5 Interpreting the Spectra

An examination of the Q-branch scans showed quite clearly that we were dealing with C-

type transitions. The Q-branch strongly resembles the parallel type band of a symmetric prolate

rotor. This knowledge, along with the nuclear spin statistics, allowed us to immediately identify

each transition with an even or odd rotational quantum number. This is because the lines of each

transition of the P and R-branches (the Q-branch lines are not resolved) at some point show a

regular alteration in intensity in complete agreement with the nuclear spin statistics of the two

fluorine atoms. For a C-type band, even J transitions start with a weak line (on the high energy

side), odd J transitions with a strong line. For the R-branch these parity assignments were

confirmed when actual J-values were assigned to each transitioh. by using the SiH 4 lines and

counting the number of 10.2 GHz intervals from the edge of the Q-branch. This was not so easy on

the P-Branch side because there was no definite edge to the Q-branch there, and it was clear that

an unknown number of P-branch transitions were obscured by the Q-branch lines.

I1 To be absolutely sure of the quantum number assignments on the R-branch side, and to

3 determine how many P-branch transitions t% ere actually hidden by Q-branch lines it was

necessary to actually identify in the scans as many low J transitions as possible. This was not easy,

Il because the low J transitions on both the P and R-branch sides were weak and it was hard to tell

them apart from the noise in the scan. One way to strengthen the low J transitions was to change

I the Boltzman distribution of the sample. We did this by cooling the cell to dry ice temperature.

Under !he approximations given in Equalun (57) and Equation (52), the rotational wave functions,
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and hence the rotational energies, are independent from the other energies of the molecule.

Therefore we can approximate the fraction of molecules in the sample at a particular rotational

energy level J by Equation (55). If we approximate A = C, then we have from Equation (55)

-( A+C) 1(1J+ )

(2j+l)exp 2k B T

f=J .= (2k(BIT for A and C in units of energy
K K (2j+l)exp -(A+C) J(J+1) (62)

1 1 Xj c 2k TJ

For this molecule in the ground state k T (A + C), even at dry ice temperatures. Thus

-, ,and the denominator of Equation (62) becomes

( 1 -(A+C) J(J +1) 2k B T

f(2j+1)exp 2k T (A+C) (63)

To determine the preferred J value at any particular temperature we set

d =0 (64)

which leads to

Jmax = kBT) - for A and C in unitsof energy (65)

For room temperature J max = 25. For dry ice temperatures (- 800C) J max -20.

By cooling the cell with dry ice we were able to identify all R-branch transitions, and all P-

branch transitions down to J=4. (the J value of this transition was later confirmed by direct

I association with computer generated spectra.)

Although we determined the SF202 spectra to be primarily C-type transitions, there was

still some structure in the absorption scans that could not bc accounted for. Since there were no B or

A transitions for the v 8 band, this additional 5tructure could only be coming from another

vibrational transition (hot band), or from an isotopic band. The only isotope that exists in any

I



appreciable quantity for any SF20 2 component is 34S. Approximately 1/20 of all sulfur is 34S.

Therefore, if the observed structure was due to 34S, we would expect to see a C-type spectrum that

was 1/20 as intense as our primary spectra with the following modifications: Under the harmonic

oscillator approximation, the vibrational band center would be shifted by an amount proportional

to the ratios of the reduced masses; that is:

ms 32 32Iis +2m f+2 mo = 32+38+32 -0- (66)

i 34 34

m 's+2m f+2 mo 34+38+32 104 (67)

32SF202 band center: . (872.21) 869.12cm 1  (68)

Furthermore the transition spacings will be shifted an amount approximated to first order by

A A+C)(- 9.79Ghz (69)

However, this type of structure was not observed. What we do see is too strong and does not follow

the above pz'terns. Therefore we conclude that the unidentified structure is probably not due to

the isotope 34S.

To check the possibility that the structure may be due to a hot band, we can check Table 9

for the correct vibrational difference combinations.
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Table 9
Observed Frequencies and Band Assignments for SF202. From [12] [p. 5721

v Assignments
(cm-1)

274 4
360 V v

386 V V9

539 v 7

544 2v
4

553 V3

668 V4 +V 9

720 2v-

769 2v 9

I848 V2

887.2 V8

925 2v 4 + V9954 v - v
6 3

1077 2V7

1092 V. +V

1103 2v 3

1118 V2 +V 4

1269 V

1389 V2 + V7

1502 V6

1698 2v2
1 1727 V2 + V8

1772 2v 8
1820 v_ +_V_

1889 ?__
2052 v + v

2115 v_ + v2_

2355 V +V

2536 2v 1

2760 v +V 63 2995 2v

I
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We look for difference combinations of ,arious excited bands that come close to being separated by

I 887cm -1 , and have an appreciable occupation at room temperature. The only likely candidates are

listed in Table 10.

Table 10
Possible Hot Bands

Band + 887 cm-1 = Band + Left-over Rotational J-
Rotational valuesl to
Energy which left-

over
Rotational

Energy

.- Correspondsv4= 1 v_ = 2 8 r- 252

(274cm-1) (1077cm-1) _ _ _
VU- =1 V, 1 _22cm 1  66

(360cm-1) (1269cm-1) I
v9= v=1 4cm-1  I 12

(386cm - ) [ (1269cm-') [
1Based on a spacing of approx. .34 cm "1 per transition

Based on the information in Table 10 we can eliminate all but the v 9 band. The other modes

involve interactions with J-values that are so high as to preclude any appreciable occupation at

room temperature(for example, the J=66 rotational level has an occupation of only .028%).

Therefore, if the unidentified structure is hot band activity, it is probably due to the transition

V9 -4 vl = 1.

Next we use the fact that the Boltzman occupancy of the v 9 band will change

differently with temperature than the occupancy uf the V 8 band. Using Equation (52), Equation

(54), Equation (62) and Equation (63) we can construct the following table
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I Table I I
Comparison of Fractional Occupancies (fk.fp) of Tyvpical Low-i Transitions of the VS Band with

3Hot Band v 9 ==I Transitions of Similar Er zrgies

Basic Data IComparison Of Fractional5 1 ____________ __________ I Occupancies _____

Vibrational Fractional Fractional Fractional Fractional
SaeOcupancy at Occupancy at Occupancy at 3ccupanc;' at$SaeRoom Dry Ice Temp- Room Dry Ice Terr-p.

Tmp. (T =193 0 K) Temp. 193*K)
(T = 294 'K)_ (T =294K W____

Ground State =v=4.4% f 74.91%i f f-
v V cround J =3 W.ound J =3

I state j25 State .6,_______6% f f_.5 65
1=156 v,=1 3=15

v1 K ' La% j-.12%

I Rotational If f = f .
Statec stat=eg ur-: =

__ __ __ __ __ _ .52% Sae1.33%

3 -1 9 1 6~%1 9 -13

j 7 f f3 = L.19% f f1 = L .13%%

1 =_______2_37 =0

I If, we now go to our scnsuve see that in each case as ve go frorn roon.-temperature to drice

fttemperature. the strength of the vSbond tr-nsition ia reases whethat of the hot band

decreases, Pi1st as predicted in Table 11. if wec take th1ra.z of the strongest v8 band line to th

Istrongest hz't band line in the samc scan. ani conmeare this rat~o at I:,h tenpe-rtures .- eshould

see that the ratio wvill always increase as ive goirm room tempceratu-ne dow..n to dry ice

temperature (See Figure 9).
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Figure 9-Comparison of Lines From the v Band to Lines from the Hot Band Transition At Room

and Dry Ice Temperatures

Figure 9 shows that the experimental scans do in fact display the predicted pattern.

Therefore we conclude that the unidentified structure in the scans which cannot be attnbuted to

I



the C-type transitions of the v 8 band are most probal~y hot band transitions originating from

I the v9 vibrational band.

I
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i[ Chapter 4

3 ERROR ANALYSIS

I The largest source of experimental error was the diode itself. Over the course of the

scans, taken in the lock-in mode, small deviations in frequency output linearity were observed

which did not reproduce from scan to scan [15] [p.26991. These instabilities in the laser affected our

5 ability to pinpoint transition frequencies, that is, repeated scans of the same transition produced

different locations in frequency space for the same lines. The precision with which we could

measure the frequency of a particular transition varied from transition to transition depending on

* the behavior of the laser and the relation of the transition line in question to the superimposed

SiH 4 sample lines. These errors were accounted for by scanning each transition several times and

iusing the sample standard deviation as a measure of the uncertainty or precision of the frequency

of each line entered into the least-squares fit program. The program then assigned a relative

weight factor, by standard least-squares theory, to each line based on the entered uncertainty.

5The instabilities in the laser output frequency arise from the sensitivity of the laser to

temperature, current and mechanical fluctuations. In each case, we were able to develop

techniques for minimizing the errors produced from each source.

Of all the sources of instability, the diode is most sensitive to temperature fluctuation

1 [151 [p. 26951. Temperature fluctuations o er the course of a scan are either instantaneous or long

3 term. Long term temperature fluctuations (temperature drift) were detected by comparing the CTS

panel readings from the beginning and the end of the scans. However, unless the CTS was

I monitored constantly during the scan, only cumulative temperature drift could be detected, For the

CTS model used, which employed a silicon diode temperature sensor, typical temperature drifts

I are given in Table 12.
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Table 12
Temperature Drift

( Temperature Drift [ Si Diode Behavior
T>25°K ±.003 °K I mV
________________mm 2"7-________'- ____

T<250K +.001 50m v

Table 12 also shows that the temperature is susceptible to voltage fluctuations, particularly at

lower temperatures. Error due to temperature changes was minimized by rejecting all scans for

3 which large temperature drifts were observed. The diode temperature was also allowed a period

of time to stabilize to the new current setting before a scan was initiated.

Although we could eliminate a large number of scans by reading temperature drift from

the CTS, not all errors from the temperature fluctuation could be eliminated this way.

Instantaneous temperature variations, temperature hysteresis, and temperature drift which

affected the laser but could not be measured on the CTS still influenced the scans. Temperature

hysteresis results in an overall (non-reproducable) frequency shift between scans [151 [p. 26991.

I This error manifests itself when the scans are normalized. Since absorption and transmission scans

-- were not taken simultaneously, dividing them together, when one is shifted with respect to the

other, may have introduced a shift in the line positions. If the right equipment is available, the

3 shift between absorption and transmission scans can be eliminated. One way is to split the beam

before it enters the sample cell. Part of the beam then travels through the sample, while the

other part does not. The beams remain spatially separated through the monochromator and enter

3I separate detectors. Since the scans are recorded simultaneously, there will be no shift.

But even if absolute shift between divided scans is eliminated, there still exists

instantar,-us temperature fluctuations and some temperature drift. Both drift (which has

already been discussed) and fluctuations are functions of the CTS. The ability of the CTS to

-i stabilize the temperature (and hence eliminate fluctuations) i5 affected in part by the sensor

responsitivity. The increase in heat capacity of the sensor with temperature will slow the speed
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of the cryogenic heat sink and increase the time required to stabilize the temperature as the

current changes during the scan. We compensated for this as much as we could by optimizing the

gain and reset controls on the CTS for each scan temperature. Another way to eliminate the effect

of a temperature fluctuation would be to use the si eep integration method of recording data. Since

scan times for this method of data collection are extremely fast (10 seconds or less), the laser mount

temperature, once it has reached equilibrium with respect to the average current, generally

remains stable over periods lasting much longer that, the typical scan time [151 [p. 2697].

Fluctuations in current, or non-linear current sweeps, are also classified as instantaneous

31 and long-term. Instantaneous fluctuations result from changes in ambient temperature and the

ability of the LCM to control transient currents. For this system, typical values are given in

i Table 13.

TTable 13

3 Current Stability

[ Current Readout Accuracy .lmAmp

Drift JmAmp
t.02, day

Temperature Stability -.02 mAp

1 Line Voltage Stability .01 mAmp change for line voltage
change up to 20%

From the table we see that the current is much more stable than the temperature. But at a typical

diode tuning rate of 480 MHz/mAmp, even current fluctuations can lead to errors.

5 The major source of mechanical fluctuations was the refrigerator piston in the cold head.

Although various methods of insulating the cold head were tried , this vibration could not be

Ieliminated completely. This is one of the reasons the etalon was abandoned as a means of

5 measuring relative frequency in the spectra. The jiggle in the beam as it traveled through the

etalon caused the peak spacings to vary considerably vithin the same scan, making them almost

5
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3

useless as measuring tools. The smaller the free spectral range of the etalon, the worse the effect.

3 Besides going to the SiFI4 as a means of estimating relative frequency, the effect of the vibration

was minimized by using irises to clip the perimeter of the beam, thereby eliminating the most

3 unstable part of the beam profile.

The net effect of these error sources was to cause the current-temperature combination at

each frequency to be different from scan to scan, resulting in deviations from frequency linearity

5 down to the MHz level [161 [p.9511. Because we derived relative frequency in the spectra by

estimating a linear scan rate between neighboring SiH 4 lines, transition lines which were closer to

5 the SiH4 lines were inherently more accurate than lines which were farther away. Lines that

were far away were subject to a cumulative error as the linear estimate deviated farther and

farther from the actual non-linear scan rate. This effect was manifested in larger sample

g variances for transitions :hat were positioned far away from SiH 4 lines.

As stated earlier, because these errors manifest themselves as variations in transition

3frequencies which are not reproducible from scan to scanthey can be treated as random errors.

Therefore the sample variance is a measure of the frequency error. Table 14 lists the data from the

usable scans that were actually entered into the least-squares fit program. It was assumed that

3 all lines within the same transition shared the same ',ariance. Each line entered into the program

with its accompanying variance was assigned a weight factor by the least-squares routine. Table

3 14 does not represent all the scans taken. Those scans which were too noisy or otherwise distorted

or smeared beyond value were eliminated from consideration. Scans which produced values

Iwhich were so far off as to be obviously incorrect were discarded or retaken.

1
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Table 14

Spectral Data For Least-Squares Fitting Routine

Observed J Sample Mean 1  Sample Standard Transition

Transition Deviation Spacing 2 (Ghz)

29 30 897.2524 -.00013 __ ____ ___ ____ ___ ___ ____ ___9.67

28 -29 896.9300 .0005

9.97

27 -+ 28 896.5976 .0010

17 -418 893.2986 .0002II' I10.21
16 - 17 892.9582 I .0015

12 -+13 1 891.6268 .0006

_ ___ 10.13

11 -- 12 891.2891 .0004

_ _ __• _10.12

10-411 I 890.9517 -. 0001
iii j 10.08

9 -*10 890.6156 .0003

10.09

• 1 8-49 890.2792 .0028

i ' 10.20

I



3 Table 14 (cont)

7 -> 8 889.9391 .0018 10.20

I 6 -47 889.5990 .0016

10.12

5 --> 6 889.2617 .0014

____ ___ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___10.18

I 4 -45 888.9225 .0005

I _10.22

3 -4 888.5818 .0006

I _10.22

2---3 888.2412 .0012

___10.21

I 1 -42 887.9008 .0001

5 ->4 885.5030 .0013

I 10.20

6 -> 5 885.1631 .0004 I _10.23

7-46 884.8220 .0005

, 13 -> 12 882.7302 .0001

g 16 - 15 882.6873 .0007

1Reflects value of first line on high energy side of transition

I 2 Rigid Rotor approximation predicts a transition interval of 10.2 Ghz for low-J transitions.
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I
The basis of accuracy in this experiment comes from the SiH 4 lines. They are given to an

3 accuracy of .0001 cm "1 [281. Our accuracy may have also been affected by the sample rate. Linear

estimates of scan rates varied typically from 20-40 MHz/sec. A sample rate of 2 Hz may have

I introduced errors into the absolute frequency measurements. However the net effect of the low

sample rate over our entire scan should cancel itself out, and this effect can be ignored.

Since we were operating with a sample pressure of 150 mTorr, we were well into the

doppler-broadened regime. The broadening of the lines is given by

FWHM= !4! (70)

3 where FWHM is the full width of the transition line at half-maximum in MHz, ?. is the

frequency of the laser in microns, T is the sample temperature in OK, and M is the mass of the

sample in atomic mass units. For SF202, we get a width of FWHM = 57 MHz at room temperature.

This amount of width did not prevent us from determining line centers to any significant degree.

CThe least squares fitting routine relies on the ground state inertial constants as starting

3 points in the fitting process. For the fitting process, the ground state inertial constants from the

previous microwave experiments were used. We can use the rigid rotor approximation and our

3 experimental data to calculate the ground state inertial constants and verify the accuracy of the

constants used 7. We start with the general rigid rotor hamiltonian for an asymmetric molecule

I in the prolate limit

£j HR A~ Bj +cJ (71)

3 which means

E(b) =IH =A 2 + Bt2 +CJ2 (72)Iac R' Ja BJ bi

7The theory of this portion of Chapter 4 is taken from the following References: [31 [pp. 43-
44,188-189,104-2051; [291 [p.--381; [91 [p. 15781.
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where ( ) stand for the diagonal elements (average values) of the enclosed operators in the

basis which diagonalizes HR.

Now let H R be perturbed by a small change in C, denoted by 8C , and let the

perturbation be given by the operator

H'= CJ 2(73)I
Then if E (abc) is the energy eigenvalue of the unperturbed operator, we can denote the first

order correction due to the perturbation as

UC E 8CJ') (74)

Let E(a,b,c+&-) be the eigenvalue of the hamiltonian

H= AJ Bj2 + (C + 8C)J 2  (75)

3 and define an , such that

E E(a,b,c+ ) E Eabc) +  + (76)

3 then

OM ab- E'+EI 0 (abc) _ r (i T 77)

a c a c..7}

3 Butsince s- O(0 C 2) then

CEi Eabc) . c~

ac ( (78)

In this vein, we can, using Equation (25) and Equation (5),define the following quantities

I
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-aE(j +) 1+ +j+ ) E

I 2' 2  2 aK

I aE(abc) aEK(= aB - K(79)

aE(abc) 1J(J + 1) (1-) aE

IC =-- - _2(2 2 a

and we can write Equation (72) as

E(abc ) = (XA + OB +IC (80)

Values for x, p and y are compiled in Table 15, for various J K levels.
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3 Table 15

Approximate Energy Derivatives of a Rigid Asymmetric Rotor (for K- -0.5). 7rom (3] [p. 1901

-JKCL 3 

330 8.953 1.838 1.209
440 15.950 2.368 1.681
550 24.941 2.936 2.122

I551 24.928 2.990 2.082
541 15.784 8.668 5.583

542 15.785 8.492 5.723

I 32 8.284 15.048 6.667

533 8.788 12.297 8.915
D23 3.241 20.880 5.8783 524 4.215 11.508 14.277

514 1.788 16.959 11-253

515 1.284 4.713 24.002

505 1.010 5.452 23538
660 35.932 3.511 2-558
661 35.915 3-576 2.508
651 24.730 10.321 6.984
652 24.737 10.280 6.973
642 15.410 16.817 9.973
643 15.582 15.990 10.428

633 7.622 25-510 8.868
634 8.778 18.881 14.341

624 3328 29.388 9.284
625 4.503 15.434 22.063
615 2.652 20.147 19.200

__616 1.484 5.830 34.686
606 1.347 6.219 34.434g 770 1 48.921 4.087 2.992

I If we now use the correct energy difference combinations, we can isolate the ground state

constants. Ground state energy differences are given by the difference between a P-branch and an

I R-branch transition which both terminate at the same excited state J K K If we consider

I the principle sub-branch of a C-type transition , then each transition involves AK = i and

AK 0. and the ground state energy difference is given by
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A E= R (j_ i.K _ _:., 0 - P  C -K'  - 1 .. 'K 1)

i where AE represents the energy difference between to ground state levels appearing in the

two different transitions.

I From Equation (25) we get

AE =(A -. C)(2J % ) (-C YjE )c: IK +1,K) -E~( j1K ](2

I and from Equation (80) we have

E= [0a(J ,K . .K (J1.._ . - 1. , ._,_ -I

Experimental values of A-E can b used to ch&k the val-.s (to tvihin rigid rotor accuracies) of

.A, B and C determined fm microwave easut.ts, before inuting them into the least-

squares fitting routine. ne results are tabulated in the next chapter.

6
I
U
I
I
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*Chapter 5

I RESULTS AND RECOMMENDATIONS

During the course of this experiment, we scanned over an interval of 15cm "1 covering

3 roughly 46 P and R-branch transitions and thousands of lines. The 200 lines to which we could

.eliably assign quantum numbers were entered into the least squares program and used to perform

the curve fitting. Over 4600 lines have been mapped using the S-Reduced hamiltonian to model

3 the molecular vibration-rotation. Since a listing of all 4600 lines would he prohibitively long,

graphical representations of experimental spectra and computer generated spectra (in the P and

5 R-branches) are presented for visual comparison.

The measured excited state band constants and V8 band center are presented in

I Table 16.

Table 16

3 -- Measured Excited State Band Constants and V8 Band Center

Band Constant Calculated value Estimated Standard

(cm-') (cm "1) Deviatiori (cm-1 )

i V0  887.2185 .2513x10 3

-A -.. 1710 .2376x10 "5

_ ___ B _ .1691 .2624x104I __ _,,___

C .1681 .4281x10"4

Dj .5809x10 -7  .6425x10-7

'DJK .7969x!0-7  .9017x10 7

DK .3439x10-7  .3033x!0-7

I "



Table 16 (cont.)

dl .6288x10-7  .1067x10-6

d2 -.2359x10- 6  .4440x10 -7

5 The sextic distortion coefficients were also determined, but were found to be so small as to not

contribute to the fit to a significant degree.

3 Appropriate energy difference combinations of the most reliable experimental low J

transitions of the P and R-branches were used to check the values of the ground state inertial

constants A, B and C determined in previous microwave experiments. Equation (85) was used to

3 calculate A and C. B was calculated by using Equation (86) and the values of the energy

derivatives from Table 15. The results are presented in Table 17.I
Table 17

Calculated Ground State Inertial Constants

I Inertial Constant Calculated Value Calculated Difference From

(cm-1) Standard Value

3 Deviation (cm - 1 ) given in [14]

(Mhz)

A .17138 .00018 1.8

B .16983 .00080 17.1

C .16762 .00221 -28.5U
The values in the la-t column of Table 17 are a reflection of the fact that we are dealing

exclusively with C-type transitions for this vibrational band. Because for the principle sub-

branch of a C-type transition, AK = 1 and %KI = 0, we should expect the transition energy

differences to be primarily deper on A for a molecule approaching tile prolate symmetric

I
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limit [see Equation (86)]. For more reliable information on B and C we would have to search for

those C-type transitions for which AK > 0. These are the weaker transitions in a C-type

spectra and would be correspondingly more difficult to isolate. That is why the error differences

Ifor B and C in Table 17 are so much greater than the error difference for A, and the estimated

standard deviations in Table 16 are similarly skewed. Nevertheless, the differences are still

within our experimental resolution, and we can use the values of the ground state inertial

3 constants derived in Reference [141 in the fitting routine with full confidence.

i RECOMMENDATIONS

The TDL is still a practical tool for high-resolution spectroscopy in the midd,1 IR

region. However, to reduce error, the sweep-integration method of data collection is preferable

5to the lock-in method. Since the data points are integrated simultaneously, even fast scans

would be long enough to reduce the noise and prevent line smearing, thus giving spectra that are

reproducible. Expermental setups using the multichannel integrator can be found in Reference

i [151.

f 1 The next logical step in studying SF202 should involve hetrodyning a C02 laser with

the diode laser. The P(20) line of 13CO2 (at 896.90947969 cm "1 )is very close to the R-branch

transition J = 28 -4 29 and can be used to pinpoint a line very exactly. This type of experiment

3 would provide a very reliable method to independently confirm the results of our experiment.

I
U
I
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I
I

The following 8 pages contain graphical output of experimental spectra (top of page)

and corresponding computer generated spectra (bottom of page). The transitions depicted here

are representative of the P-branch and R-branch transitions that were scanned during the course

of the experiment. For the sake of clarity some transition quantum numbers and frequencies have

been ommited in the experimental spectra.

II
I

I

I
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U J=3-4

0.00203 30 --)4 40U31 -441 8885818

0.0015 330 2 4 404 31 4 31 
M85767

3 -44 &3 ~888 3767

322 -432&321 31

0.0010 32- 4 22&13 -- 83725

a) 8883700
O 0.0005 3 4303 13

C: 0.0000

Io -0.0005I -0.0fn

-0.0015 -

I -0.0020 I I

888.53 888.55 888.57 888.59 888.61 888.63

3- wavenumber(cm-1)

I

3 0.0010

0.0008

0Il 0.0006
0

0.0002

M8.53 888655 888.57 8M8.59 88.61 88.63

wavenumber(cm-1)
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3 J=6-7

0.00 24 734 625 - 735 91 634 744 &633 743

'6 4301 -897953 &6 42 75
a$ 89

.5829 8895957 -47 & -6 51 1
1=% 0.0000

08 889S993 6 7 &6 --)7

-L-0.0010

-0.G020

-0.0030
889.55 889.57 889.59 889.61 889.63 889.65

0.0014 I

3 0.0012

AD 0.0010

0 0.0008

0/
*u 0 .0004

0.0000
889.55 689.57 889.59 889.61 889.63 889.65
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I J=6-7

3 0.0020 1

6 -*7 &6 -47 8 -6 -47 &6 724 34 25 35/ 34 44 33 43
0.0010"91 6 43 7 53 &6 42 ---)7 52

t.S|.5|21889.5957
C.652 762&651 " 761U~ ~~1% 0.0000 i~~-~& *

8 60 70 61 71

EL-0.0010

-0.0020

-0.0030 
1

889.55 889.57 889.59 889.61 889.63 869.65

wavenumber(cm-1)

I

0.0014

1 0.0012

C)A 0.0010

0 0.0008

I 0.0004

0.0002

0.0000 wirie~m1
889.55 889.57 889.59 889.61 889.63 889.65

wavenumber(cm-1)

I
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J=1 6-17

0.0070
892.9390

6929-16 11- 1712,5 &1611,6 -)1712,6
0.0065 - 5,12 6,1217 892.9148 892.9423 16 -1 1 6,4 -'17

0.0060 16 12,4 1713,4 &1612,5 1713,50.006 5,11 6,11
A) 16 -417 - 1615,1 - 17 16,1 &1615,2 -*1716,2
". 0.0055 - 2,14 3,140E 82.D9 892.9614 1 -
o 8990 16,0 1717,0 1616,1 1717,1

- 0.0050.2_
I 0.00450.0040,

0.0035

0.0030
892.85 892.89 892.93 892.97 893.01

wavenumber(cm-1)l

1 0.0030 
a

0.0025

.T 0.0020

0.0015

0
9) 0.0010

1 ~c 0.0005 
. Li

892.85 892.89 892.93 892.97 893.01

wavenumber(cm-1)
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I
i4 J=28-29

0.0040 I I I 896!,17

28 -429 &28 ---> 29
0.0035 24,5 25,5 24,4 25,4 8 96.9390 28 ,-29 &28 -*29899~27,1 28,1&227,2 "2928,2

28 -* 29 &28 -* 29 -
0.0030 23,5 24,5 23,6 24,6 28 -- 29 0&28 -29-- __-- 28,0 29"0&2881 29"1

"E 0.0025 28 -- 29 &
0)20,9 21,9 896.965

0.0020 - 28 -2920,8 21,8I 8 0.0015 -28 -29 &2 17,11 18,11
2L 0.0010 - 28 -429 P6485117,12 18,12

0.0000

I 28 19,9 --*29 &
-0.0005 19 20,9

28 --*29
-0.001C 19,0 20,1

896.70 896.74 896.78 896.82 M.86 896.90 896.94 896.98

wavenumber(cm-1)

0.0030

0.0025

4-

.2 0.0020

0 .0015
0

-
C 0.0015

I _ _ _.__ _ _ _ _ _ _.__ _ _ _4 sss

8,M.70 .74896.86 896.90 8694 89698

wavenumber(cm-1)

I
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I J=5-4

i Iii

514 - 04 532 -422)7

0.0080 542 -)4 32 541 -431 W-

5 -4 45-s
50 40 51 41

0.0070
0

* 0
-0.0060

0
.o

0.0050 23 413

0.0040 1 1 51-)

885.45 885.47 885.49 885.51 885.53

wavenumber(cm-1)

I
I
1 0.0010

0.0008

0.00

I 0.00040

1 0.0002

88,5.45 M.47 885.49 885.51 885.53

3 wavenumber(cm-1)

I
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J=7-6I
0.0060

4.827 7 70 _ 6 60 & 7 7 1 -6 61

0.0050 7AA176 -6 51&762 -652

752 -642 W53 643
I 0.0040

0I 0.0030

* 0.0020

34 -624I 0.0010 -263 
AA 6

0.000.
884.78 884.80 884.82 684.84 884.86 884.88

wavenumber(cm-1)

0.0012

8 0.0008
0

I .o

834.78 884.-S 864.82 884.84 M8.66 SUM.8
wavenumber(cn-1)
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I J=1 6-15

0.0040 1 1 1 A

0.0035 1615,1 -15 14,1&16 15,2 -- 1514,2

I 0.0030 j 88& .1613,3 ' 1512,3& 613, 4 - 512,4

0-012 83415X
162-)11,5 10,5 &1611,6 -1 10,6

0 97 87 98 88

1_ 0.0005

0

Ca. 0.0010
0

0.000i ~

0.0000 16 - 1541
-0.0005 5,11 4,11

-0.0010 16 , 69

8-62 881.66 881.70 881.74 881.78 8812I '. .6 I.,o .t.. . 81.82

wavenumber(cm-1)I

0.0024 -

0.0020

I !II I

o0.00128

*a 0.0003 'U
0.0000 L AA1881.62 881.6 61.70 881.74 881.78 881.82

w av e;iurrnb er (cm -I1
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I
I
I Appendix A

I Development of the Hamiltonian

I
To find the vibrational-rotational energies of an asymmetric molecular rotor we use a

model which treats the nuclei as point masses moving through a potential field created by the

average motion of the molecular electrons. The molecules are thought of as being held together

I by semi-rigid springs whose energies are eigenvalues of the Schroedinger equation.

IH- = E.V (A-1)

I
A-I The Classical Hamiltonians

The form of the hamiltonian is found by first considering thu classical kinetic energy for
the system of point masses. The most convenient set of coordinates to use cor-zts of a set of axes

fixed in space XY,Z ) and a set of axes ( x,y,z) rotating with the molecule whose origin is at

the molecular center of mass and whose orientation in stace is described by the three Eularian

3 angles (0,6,y). The Euiarian angles are discussed more fully in Appendix B.

Let the position of the Oh nuclei with respect to the molecular center of mass be 'F

I with components (X aY a, Z a )- The center of mass is located at a distance i from the fixed

3 axes. The equilibrium position of the cth particle, which is fixed in the moving system, is

given by a (see Figure A-1).I

8The theory of Section A-I is taken from the following References 131 [pp. 2-61; Ill (pp. 14-17,3 273-278l; fi [p. 260-2641.
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z 

Z

x _ _I y N

I y
Figr A-1 -NMolecuilar Coordinates. From III Ip. 2851

IWe can now define tne v ector p.the d spo'cem nenz vector ,as f ol lows:

Pcir~aa A-2j)

If the instantaneous anguilar velocity of thew rotation is WD, then the vel.ocity-V of thea,

particle is oescnoeoca by:

where tr trsns= A3

The first tr ersen translational veloctL th sccnd the velocity of rotation, and :he

third the veiocirv of vi;bration about the cou-iibrium- !2oint. The -kin~etic eneargy of the molecule

I is
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| )25 T= Xm a( tot) = MI +V)'r,,).(6 x ) +' +2 . (Zox?
a a

2R. v +2 (2oaOx a)] (A-5)

Since we have defined the ( x,y,z ) axes to be a center of mass system, it is true by definition that

>4 m ara= 0 (A-6)
a

Taking the total differential of ra ( rax is a function of rotation and vibration) with respect to

time gives

0 =FI ara= M l() f) Va]= ) aI ac I mava = Im a = 0
a a a a a

(A-7)

Since the atoms in the molecule are all vibrating about their equilibrium positions, the

rotating axes cannot be attached to the rotating coordinate system in a definite way. However,

to ensure the rotating axes actual!y rotate with the molecule we can improse the condition

I
IM a( a XFa) = 0 (A-8)
a

This is almost the .me as stating that there must be no angular momentum with respect to the

body-fixed, rotating system of axes. We take the total differential of Equation (A-8) with

respect :o time:

3 7ma[(a X a + Va) + (~a) a )1 A m a(ib > i a) X o+ IM~ (ma (xX(E) X Fa)a aI +X(I x()=Xroc

a ac
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Using Equation (A-3), Equation (A-6), Equation (A-7), and Equation (A-9) to modify Equation

(A-5) leaves

2T 2 M + a( oxEM) (,o x Faa) + () + Em 2P (Al)

a V•a + 26(- , x )(A-10)

a a

where M = a

Disregarding the translational term and noting that by expanding the determinant form of the

cross product we get

2 2 + I-J 2 21oCO _ 2iyCzO

- zI -0 xcoz (A-11)

and the kinetic energy becomes

2 2 2 2I x 21 2I
2T =I xXCO x + I yyco y + I ZCOZ- 21 yIo y(O z- 21 oy Xxzc x COZ

+XYM JCC+ 2~x ( c a X M + 2coyIM a(Pa X a) + 2co zYMa( a X a)
a a X a Y a

3 (A-12)

where Ixx, Iyy, Izz, Ixy, Iyz, Ixz are the components of the inertia tensor,(
(A-12a)

81



To deal with the coupled terms in Equation (A-12), it is necessary to treat the vibrations

of the atoms as small displacements about their equilibrium points. The kinetic energy is then

given by

N ( dAxa + (dAy d )+2  ( d A 21

2T=Xm 2 .d y~--j(A-13)
I a=)

where AX a, etc. are the components of P. Let us now replace the coordinates Ax . AZ N

by a set of mass - weighted coordinates q, ... q3n defined by q = m Ax

S1 = Ay 1, q 3 -,/m I I,1, q 4 =\/ 2 2 , etc. The kinetic energy now

becomes

3N
2T= q2 (A-14)

i=l

The potential energy V, a function only of the small vibrational displacements, is now a function

of the q's. We can, therefore, expand V as a power series in the qi's.

3N 32V = 2V°+ 21(2- qi+ Y-- (O -aq qiqJ+i=1 q i= o  i,j=l i )q i=qJ= 0 "' (A+

Adjusting the zero point of the energy to be the equilibrium point and noting that, at

|~ -o
equilibrium, , we have

I qi=

3N (2v

2V= j where = (A-16)
Yqiq =0

In deriving Equation (A-16), the higher order terms have been neglected.

I
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Newton's equations of motion are writtenI_
d + . = 0 ,j=1,2,...,3N (A-17)Ut Dq j j

since T is a function of the velocities only, and V is a function of the coordinates only.

Substituting T and V from Equation (A-14) and Equation (A-16) into Equation (A-17) gives

i 3Nqlj + ilfij q,. = 0 j=1,2....,3N (A-18)

I=1IA solution to this set of 3N simultaneous second-order differential equations is

q = A icos 2 + Ej (A-19)

By substituting Equation (A-19) into Equation (A-18), the following set of equations result

3N
f ,i XA 0 j=12,...,3N (A-20)

where 6 is the Kronecker delta. Non-trivial solutions for A1 correspond only to those values

. for which the following secular equation is satisfied

fL,1 - IL)'jfl,'l3" f,3I (f 1 1 ), 21f1,31..., I 1,3N

f 2 ,1 '(f 2,2 -)
'f 2,3 " ' f2,3N 0 (A-21)

S f3Nl' f3N, 2 ' f 3N,3 '( f 3N,3N -X)i

3 When we choose a certain value ? = L k so as to make the above determinant vanish,

the coefficients A, =Ak are determined for that particular value X k ' Since the above system

of equations does not determine Aik uniquely, but gives only thLir ratios, arbitrary solutions

I
* 8



!

(which are unique) can be designated by the quantities Ilk ,.hich are defined in terms of an

3 arbitrary solution A'ik as follows

| A'
ik ik

! (A-22)I2

The advantage to this is that the amplitudes are normalized such that

I Xik~ =1 (A-23)

Note the secular equation (A-21) consists of 3N rows and 3N columns corresponding to 3N

unknown Ai's and 3N unknown eigenvalues A.k " There are however six roots which are zero,

C corresponding to the three normal coordinates of t-anslation, and three normal coordinates of

i rotation, leaving only 3N-6 non-zero roots (corresponding to the 3N-6 normal vibrational modes).

This fact, along with the normalization relation (A-22), allows us to define

3N-6

M Ax = E ckQ k
k=I

3N-6

M aAya= Xr akQ k (A-24)
k=1

3N-6

Az k=In kQk

M.., 2" 0 =X(A x2+A y2+Az
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Now the coupling terms become

3N-6

x a k=1

3N-6

YM Xm X V.) Y X91k Qk (A-25)
a Y k=1

3N-6

-~c c Xm V )= I k Qk
a z k=t

Swlm- 1 k Xm,(r aInak-haIJ cak)Ql
a, I

k m (x( n ccl ak a I ak)QI (A-26)
a,II

k Ima(i alak -- cIlok)Q II ana, I

The kinetic energy is now

2T+I C02 + 1 02 +I 2 2ICOc1 - 2I CO0- 21 0)

+ 2w X sk Qk + 24" OvDY k Qk + 2o? -E k ek + 1Qk (A-27)
k k k k

We will find it convenient to have the kinetic energy expressed in terms of angular

momenta, rather than angular velocitics. The total angular momentum is a vector whose

properties arise from its definition

8
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I = Z ' x '= Zmo [ x(co r r' ]+ m ("X " (A-28)

By expanding Equation (A-28) or by noting P x - ,etc., we have
&0xI

P×= Ic- IcXY Oy Iz + Y kOk

SPy= -1 xYCox +IY)Y - YZ 0z + 1 k Qk (A-29)

Pz =- I () -I yz)Y + ZZ k Qk

The momentum conjugate to Qk is

Pk= •=Q k +xkOX +91kCOY +R kCOZ (A-30)
aQ k

Solving Equation (A-30) for Q k and substituting the result into Equation (A-29) yields

I x=I x IXy) yz+-k(P k k l)ky ykO+) Jetc. (A-31)

It is now convenient to introduce the following definitions

2 D
' I - k. IJ- = ) k k kPk

I I'yyis= I1., - IN- 9 2 . I'V=. Iz + I N S .-p = 2Ik A-23 i',==iyyXz~ _ 1

z I2 k I z+ k k ; p Z kPk

3 We can see from their definition, that px, PY' Pz are functions of the vibrations alone. As a

result they are often called components of internal or vibrational angular momentum.

USubstituting Equation (A-32) into Equation (A-31) gives
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U(P -Px) I'ji xxO -I -XY CO) y Oz

(P - py)=-I',,c XY Co+1 PYY O y YZ CO z (A-33)

IP - Z -lzo -I. ZC zC
U The inverse transformation of Equation (A-33) is

=g P(px-px)+gxy(py-Py) +j±,(Pz-pz)

where RP Yz 7z % I* z I' + 1  YYIx

A Ax

XY rX2 zx Yx (A-35)
AA

I and A=1 W.-I

-I X-I F IF'z

Substituting Equation (A-321., Equation (A-33), and Equation (A-34) into Equation (A-27) shows

the kinetic energy as
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I

2T ..(Px  pX)2+g , P y) 2 2

+2= ' - _ Pzpz +2g (Pz-pz)  +2px) (Pxp ×)P -p.

i Note that the 9 gg, are functions of the normal (vibrational) coordinates only. The classical

hamiltonian is complete when V is added to Equation (A-36).

I
A-2 The Quantum Mechanical Hamiltonian 9

3 IBecause the total angular momenta Px, Py, Pz, in Equation. (A-36) were not derived

with respect to any conjugal coordinate system, we cannot transform directly from classical to

quantum mechanical hamiltonian. Thus we must derive the quantum mechanically correct form

of the hamiltonian in an arbitrary coordinate system.

In most normalized coordinate systems, an element of differential length in n dimensions

is characterized by the expression

1 d5 22 2d q l h dq + hn dq (A-37)

For an arbitrary coordinate system of n dimensions, a differential element of length is given byI
ds 2  gidu2+ 2g 2 dudu2  a du2+2g2 3du 2du 3 +. ..+gd u2

5 =IEgijdurdus , gi =gjj (A-38)
li,

where the coefficients gij may be functions of the coordinates. The transformation of the

Schroedinger equation for a sing'e particle from the n-dimensional coordinate system

9The theory of Section A-2 is taken from the following References: (5); [1 (pp. 279-2831; 1611 [pp.262-26i1.
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I
represented by Equr lion (A-37), to the n-dimensional coordinate system given in Equation (A-38)

I is

a- g o~c ii q)./ 2m (E -7 Vq q(-9

U ij 0 (A-39)

I where

I
;g 11- 12 - 9

-- 212 g2 n (A-40)
iff-- fWvqqg 2 duIdu 2 . -. .d u n 1 ad

!g nl'g n2l'" "'gnnl

The corresponding normalization for WiJu is

I

Equation (A-40) and Equation (A-41) imply

I

S.Q =ga Vu (A-42)

Substituting from Equation (A-42) into Equadon (A-39) and multiplying through by- h g
2m

gives

In n I (-t
" "4 h a /2" iih a o4 Vu 0(-3

2m 9 g--g 0 i-.o VU + VuNuENu0 (A-43)
i,j=l i k

Replacing the differential operators I-au by the corresponding momenta and absorbing the m

into the determinant gives the hamiltonian in the correct ferm ft; arbitrary coordinates

8
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I
I ! n -I i

H= ig -'Pig2gJpjg4 + V (A-44)

U iij

Notice that the potential V is unchanged from its classical form because it is a function of the

3 coordinates and not of the momenta.

For the hamiltonian in Equation (A-44) the kinetic energy is given by

2T = gi q i q, (A-45)

or in terms of the momenta

2T= gijP iPj (A-46)I i,i
The coefficients gij are elements of the matrix which is the inverse of the matrix formed by the

gij and the momenta Pi are, of course, conjugate to the generalized coordinates qi.

Transforming now to a set of momenta Fm which are not conjugate to any set of

coordinates, but are instead defined by the expressionI

2 X G r Pn (A48
now 2Tn~ n( 8

Gmn = Ys kmg SI (A-49)

Swhee we define kI

3 We must now determine under what conditions a quantum mechanical hamiltonian may be

written in a form analogous to equation Equation (A44), but in terms of the momenta Pm,

namely
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U
1 1 -I 1I

H=5G~ ZP'mGmnG 2 p'nG4 +V (-0
mn

where G =IGmn.

3 To find these conditions, substitute Equation (A-49) into Equation (A-50) and the expression

3 Psm= Esmipi (A-51)

I which is the inverse of the transformation Equation (A-47).

We derive the result

H= 2g4s Esi kj -J4 (A-52)

2 ijkm m Cs +

by noting that G = s 2g and I s Ins  = ; where S = ;S

I For Equation (A-51) to reduce to Equation (A-44) the condition

1 -1
s2 M1 Pisk2sI= 2 (A-53)

i'm

3 must be fulfilled.

If the kinetic energy of the rotating-vibrating molecule was expressed in terms of the

Eularian angles, 0,6. and the normal coordinates Qk, together with the conjugate momenta

I P0'' Py and Pk; the hamiltonian operator could immediately assume the form of

Equation (A-44). But the kinetic energy is expressed in terms f

I (x-Px)'(Pyv-Py)'(Pz-PJ) and Pk" We therefore need to apply the condition

Equation (A-53) to the transformation of the momenta P oi P o, P and P k to the momenta

found in Equation (A-36).

3To achieve this transformation, we first note that the total angular velocity vector can

be written as (see Figure A-2)
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I
I

3 =++ =Oxi+O y z xj oi+ o zk =o xi'+ 00'+c(1) (A-54)

where the components of Zb are

IX @i +i- 6+ i- ,etc. (A-55)

1
z

I zX
* o~k

I

I Ox N

(x

(oy
I x

3 Figure A-2 --Components of Total Angular Velocity .From ill Ip. 2811

I
I
I
I
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From Figure A-2 we see

3Ox=sin)- 0-sinOcos "

W (1y--os " 0 sinOcos X . (A-56)

I
()= cos 0-o+-f

3 with the inverse transformation

0=sin- & ,X+cos 7 c,

I o=-csc Ocos X- to, csc 0sin- yo, (A-57)

I
X cot Ocos X- o).-cot Osin X- cs)v. C)

Recall that

Px - -- - -0x  - =

' ~at) ae~ U oCI

From Equation (A-57) we can find ,- •etc. r-sulting in

I
Px =sinzp0 -csc Ocos zpo- cot Ocos Xpx

iy=cosZp 0 +cc 0sin Po- cot sinzp (A-59)

I Pz= Py*

From the definitions of px, p', pz in Equation (A-32) we have

9
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I
I
3 P'x=(Px -px) =sinXpo - csc Ocos Xpo+cot Ocos Xpx -EskPk

I P'y=(Py-py) =cos pO+csc 0sinXpo- cot OsinXp-_R kpk

1P:z= (Pz-P::) = P- YIN kPk (A-60)

I
Pk=Pk

I We have now found the coefficients Smi of the transformation Equation (A-51). The inverse

3 equations are

Spo = sinxP'x+cos XP'y+ X(sinX k +cos X9'k)pk

5 p=- sin 0cos XP'x+ sin0sinxP'y+ cos OP' z

I + (-sin Ocos X-k + sin0sinxSlk +COS ON k)Pk

PI = PsZ+ kP k (A-61)

I
giving the coefficients sim of the inverse transformation Equation (A-47). Rewriting the

3 condition (A-53) as

iS Mip iS kmS-, = 0 (A-62)
ikm

I and noting that pi is a differential operator allows us to write

I
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is XMis .(p is-') +S s Mi ( pis kin) = 1(pis-') + STs Mi P i~S kin 0

(A-63)

It has been shown that the above condition is satisfied for the case in hand, allowing us to write

i the quantum mechanical hamiltonian in the form of Equation (A-50)

1 -I ! 1 -i 1I2(p _I ) 2(g .g4+- 4 R2 R4 V

H=i 4X(Pg pg)2RggL 2 (pg.pg) R4 + P k P k V (A-64)
gg, k

As an aside, we stop here for a moment and quickly derive the hamiltonian used as a

starting point in the rigid rotor-harmonic oscillator approximation presented in Chapter 2. This

I approximation begins with the hamiltonian (A-64), which is completely general and contains

no approximations. The first approximation we make is to neglect the dependence of R and

g 1.1 on the no-- tal coordinates [see Equation(A-35)1. This means they are now constant, and are

not affected by any operators. Thus Equation (A-64) reduces to

H= IYgg.(Pg - pg)(Pg. - p g.) + "1 p 2 +V (A-64a)

gg' k

I Next we perform a unitary transformation to ensure the axes moving with the molecule

coincide with the principle inertial axes of the molecule at equilibrium, thereby causing the off-

diagonal terms of the inertia tensor to vanish. We also neglect the terms of the form Y' k 9 k
k

since, by definition, they depend on the squares of the small vibrational displacements [see

Equation (A-26)]. Then the terms Pxy , Iyz and I xz are zero, andI xx= I, I yy= I yy and

I'ZZ= Jz [see Equation. (A-32)]. The terms P gg now become reciprocals of the principle rigid

moments of inertia and the hamiltonian is now as shown in Equation (1).

I
i
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A-3 Perturbation Treatment10

A more convenient form of Equation (A-64) is

1 1 1 1 -1 1
H= j'XI.LggPgPg-XhgPg + ' L4 pgp.gg, 2 pgp.L4+jzp--' kP.l 4 +V

gg' g gg' k

(A-65)

where

* (T1T1 -
hg 4 99' I. gg + g 4 4 pg, gg t 4 )

g

The hamiltonian in Equation (A-65) can be divided into three terms: H o a pureJy vibrational

term consisting of the last three terms of Equation (A-65); HR, which consists of those parts of

the first term which are diagonal in the vibrational quantum numbers; and the perturbing

3 hamiltonian H' which includes the second term and those parts of the first term which are not

included in HR

We now make the following approximations: the wave function IV VR can be written as

3 the product of the two independent functions IV V and R R where 'V v are the orthonormal

solutions to the harmonic oscillator hamiltonian, and 'YR depends only on the rotational

coordinates. In this manner, H o and H R are diagonal in V, but not necessarily in R. If we

3 expand ' R for an asymmetric rotor in terms of the symmetric rotor basis functions

(see Appendix B ), we see ly R is not diagonal in K.

3 Before we apply a perturbation treatment to H we must take care of the off-diagonal

elements of H' in the vibrational matrix. We do this by performing a unitary transformation

10The theory of Section A-3 is taken from the following References: [31 [pp.33-371; [61 [pp. 263-
2661; [25] [pp. 277-281].
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which will remove to first order in X, the off-diagonal matrix elements of H', while preserving

to first order in X, the matrix elements of H' that lie inside the diagonal blocks (see Figure A-3).

21X921?2 2X212 X

XI) X 2 2 2 2 22 2'IilX X XXI
__ XX

~X ?,X X 12 X2X2 X2 ?2 22 2
X- X XX

T; X 2 2 2 2 2) -I -L I xXX U ?, 2 2JLX X X X

Figure A-3 -- Matrix Representation Of H'. From [31 [p. 341.

I Thus the elements of H' which are outside the diagonal i~locks are of the order Xand

contribute to the energy only to fourth order in X. These element; can be neglected in second

I order perturbation theory. This unitary transformation is known as the Van Vieck

* transformation.

A unitary operator can be expre!s:e as

U = exp iXS) (A-66)

U where S is hermitian. We transform H as follows

G -1H =1 -US-XS ~i2 + . .1H0 + H + HiI,+ O Xs 2

2 3

= =Go +XG 1 +XLG 2 +X 3G 3 + (A-67)
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Equating like powers of , gives

G,= H,+ H R

I~ ~ G 1 H+[H+ H')S - S(H0 + HO)]

G2=i(H'S -SH')+ S(H0 +HO)S - [(H 0 +H H ) 2 S(H 0 + HO)] (A-68)

Now let the rotational sub-block of interest be labeled by IV;JKM) and indexed by j, k,

I etc., and the levels of the other rotational sub- blocks by OC P, Y7 and so forth. The Van Vleck

transformation must satisfy two requirements. Requirement one is that (QG 11k)= (jTH'jk) or

l 0 = (('(H O + HR)S - S(H o + -HR)k) = (E1 - E (Sjk) (A-69)

This requirement is satisfied by

I ('SIk)= 0 (A-70)

Requirement two is that JiG Oc) vanishes, or

3 0 = (H'!a) + i(Ji[(Ho + HO)S - S(H 0 + HRO)- (JH'i) + i(E -E,) (jsla

(A-71)

Ii which implies

(f S1 cc) -E j-E (A-72)

Thus we have determined the nature of the hermitian operator S that generates the unitary

Itransformation. Now by applying Equation (A-70) and Equation (A-72) to Equation (A-67) we

98



'I

U I can determine the matrix elements of G within the same (2j x 1) x (2j x 1) block IV;JKM)

to second order

(JG0 k) = (jtHo + HOIk) = Ejk

U(G 11k) = (j'H'lk) (A-73)

,-(E+ , )-Ec(jl-li)(alHik)

22

T JG 21i) / -' a _E E_E a)

Now the off-diagonal sub-blocks contain terms only of order X and higher and can be neglected

in second order perturbation theory. If more accuracy is desired, C can always be subjected to

another Van Vleck transformation.

If we now neglect the off-diagonal elements of H in the matrix V, the remaining

diagonal terms each factor into smaller matrices, one for each vibrational state, whose elements

(R,VIHIR',V) are labeled by the rotational quantum numbers only.

I Using standard perturbation theory, we can write

I H=HO+HR +H' (A-74)

I where we can expand the perturbing hamiltortian H' to second order in a po,,ver senes in ,

(X small), that is

The zeroeth and first order terms are given by

I
I
I
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I0
(RVJ0 + HO+ ?LH'jRV) =(RM HOI V) + (R1H~ + ?,HJR'V)

I E~+ j~(IiDg )(R PgPg* tR'V) - X(hg)(RV jR'V) (-6

ggg

Ev is the vibrational energy, diagonal in R and V, whose diagonal elements are Ev. The last two

terms come from the fact that 1. gg. and hg are functions only of the vibrational coordinates [see

Equation (A-33) and Equation (A-65)] plus the approximation IV VR = XV V'VR.

We can further simplify Equation (A-76) by noting that, since hg is pure imaginary

(each operator pg carries one term of -ih and all other terms are real), and because H and Pg are

U hermitian, the matrix (VfhgV ) is hermitian. Also for a non-degenerate asymmetric rotor,

the 'v v are real. Hence the diagonal term

(VlhglV) = (V!hg V) (V'1gI V) = "(Vjg"V = 0 (A-77)

The second order term is given by

2 (VRIH'iV"R")(V'R' HiVR)
A.2HI =  TRV E v E  (A-78)

V";CV

i Here we have assumed the rotational spacing is small compared to the vibrational levels so0 -- 0
O

that E .v R" can be replaced by - E v-" Equation (A-78), when multiplied out will

give us the quartic, cubic and quadratic terms of P x, P y and P z- The coefficients of the terms

3 3
Px, P y and 1 are of the form

1 (VIgg"V**)(V"lh 9. V)+(Vh .. V")(V "g iV)

E v-E V,-(AV.."

Ve V-0
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I They can be shown to vanish by noting that, since hg is pure imaginary,

(Vhg[V') =- (VjhgI V");and since gg. isa real operatr, (V[j.gg[V") = (V l.gg[jv).

The rest of the cubic terms are of the type Px P y - PYPx , etc. These can likewise be

elinmivateJ by use of the commutation rules .- -1 ijk k k at the cost of introducing extra

quadratic terms.

Thus. a. - result of the perturbation treatment, the rotational matrix

H ' + H', which corresponds to a single vibrational state can be written as a

polynomial in Px, Py and Pz

H= Ev +Il a gPgPg.+4 E C g'jPg P  P " . (A-80)
0 .... P PP

gg gg ;j

where . and Tg.ji. are functions of the vibrational state only. Note also that

I, gg '  "g j '

T E v-E (A-81)
V" v"

i A-4 The Reduced Hamiltonian"

IThe form of the hamiltonian in Equation (A-80) has several drawbacks. First, if further

accuracy is desired, higher order perturbation must be considered, t hich could become extremely

cumbersome. Also, not all the coefficients agg.nd are determinable. If all the

5consiants in Equation (A-S0) were known, it would be a straightfurward process, in principle, to

determine the energy levels from them. However, the situation that we are faced w;th

I experimentally is the reverse of this; we wish to determine, from observed energy levels, the

11 The theory of Section A-4 is taken from the following References: [41 [pp. 2-801; [18]; [171 [pp.
1935-19471.
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values of the rotational and centrifugal constants. The problem in carrying out this reverse

calculation is that not all constants or combination of constants contribute to the energy levels

and are therefore not determinable from them. For example, neglecting the quartic distortion

I terms in Equation (A-80) allows us to write the rotational hamiltonian as

I H = lggJ (A-82)

3 where (Xg . are related to the values in Equation (A-35) , for the particular vibrational state

and the symbol J now r2presents the total angular momentum. We can reduce the matrix a gg. to

diagonal form by a simple rotation of axes (to a principle axes system) giving us the reduced form

of the hamiltonian

H .Xj X j- 2 +Zj2 (A-83)Y z
where X, Y, Z are the principle values of i ccgg. It is obvious that the rotational energies

depend only on the principle values of are not12 'g'and all the other coefficients 4L gg aeo

determinable from those energies. Therefore, to obtain increased accuracy and to determine all

5 the coefficients in the hamiltonian, it is necessary to write the hamiltonian in another form.

The hamiltonian in Equation (A-80) contains such terms as J xJ 7J XJ y with individual

terms appearing in any order. By using the commutation relations 1 iJ j] = C ijk J k wecan
1(jj r~zjrjqlPl

rewrite such these terms in the form 2 (j .+ zJJ r x ) + terms to lower degree in J. For

example

ixJzj xJ y= J0xi vz +J y +vJx-_ J xJz+ JzJx - )jyvJz+ JzJy) (A-84;'

The terms of lower degree can then be changed in the same way, and the process can be repeated

3! resulting in a sum of terms of the following form

I1
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i h t P r rjqlot 2 CI Ili,,,x.'i"zJ zJ JP )  (A-85)

pqr

where the coefficients hpqr may or may not be complex.

To simplify further, we note that the rotational hamiltonian, of a given vibrational

state, is invariant to both operations of hermitian conjugation and time reversal. That is

rot rot +TH TT (A-86)

where the symbol 4 represents the adjoint of the operator. in addition, the operators J and the

coefficients hpqr have the following properties

=J TJT -_j ht =h r Th T t=h' A-87

Pqr pqr pqr pqr(A7

I Equation (A-86) and Equation (A-87) together give us

-- jr xj,I hpqr(Jxj J+J

pqr

I= p+q+r " p q pTH T.. it , j vjr.+ jr'.
SH J zJyJ ) (A-88)

pqr

TH T- h pqr(J x yJz+JzJyJxrqp
ro pqr

IThe last equation of (A-8S) shows that since terms of odd degree in p+q+r change sign under

operations of time reversal and hermitian conjugation, they do not satisfy the invariance

relation (A-86). The first two equations of (A-88) show that the remaining terms of even degree

I satisfy the invariance ret,,ion only if the hpqr are real. We now have a simplified rotational

hamiltonian

1
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hIr~' Hq i r j (A-89)
p+q-r

even

where hpqr are real. Note that the coefficients of the terms of degree greater than two are the

centrifugal distortion coefficients for a particular vibrational -tate of the molecule. One further

simplification can be made by noting that for molecules of C 2v (orthorhombic symmetry the

only non-zero terms in Equation (A-89) are those with p, q, and r all even, giving us

H (jp q rq9P)

Hrot= I hpqr( JyJz+JJyJx hpqr real (A-90)
p,q,r
even

If further accuracy is desired, we can just extend the power series to any degree in J that

we want. For the purposes of this experiment, expansion of the power series (A-90) to the sixth

power in J is needed. With a slight change in notation we have

H = rB.J X,+Y JT Jo + J+ a. J a a j wa+
a a'Paae

+ + j 7 (A-91)

2
where the coefficients are real and Ta 3 = TlPa" In terms of J , J z and J ± we have

I

-" 4 6 2 2I + O~240 J-Jz + °6°J z ' 2[B -2 p .~r -+T J + O4 O(J2)- + P222jj2 + {I 042 J1 z

I H1 J[]J+ lT T 2 (A-92)

+

where [A,B] represents the anti-commutator AB + BA and the subscripts on the

c-efficients now refer to the powers of J , J z an, J = respectively. To go from the form of the
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Hrot in Equation (A-91) to Hrot in Equation (A-92) requires repeated use of the commutation

relations [J i'J j] = E ijk J k. For each constant, terms of higher degree are negligible therefore

neglected. With this in mind the relations between the constants in Equation (A-91) and

Equation (A-92) are given in Table A-1.

I
I
U

I
a
i

I

I
I
I
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TABLE A-1
Relationship among constants in Equation (A-91) and Equation (A-92). From [4] [p. 21].

B 0 B +B )-4T 00 4  (024-(=8 +-YYZ 0)-

B02 =(B xB ) -B006 =c(D x -yyy)- (D xy-Dyyx)

B 020 =Bz-B 200 +6T004

T4 oo = I(3Tx + 3Ty, + 2T)

T 220 = (T7 + Tyz) - 2T 400

T 040 
= T z To 2- T 400

202 =

((I)= + (Dy,) + 1 (,D + ( )

(D420 = (D , + *yy) + 1 .Iyz - 30

D 240 ( (*x + (zzy )- 240 -30600

I 060 = zzz - 240 -*420 - 600
(D 15 (D

(12402 - x ( yy) + - ( -<

q = 
-1

042= 2 .y (222 402

)204+ = iL, +0)xx* +*0 ,)I
We still have the problem of which constants or combination of constants contribute to

I the energy levels and can therefore be determined from them. We can solve this problem by

noting that the eigenvalues of the rotational hamiltonian are unaltered when the hamiltonian
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I is transformed by an arbitrary unitary operator [the transformation from Equation (A-82) to

3 Equation (A-83) is an example of such a unitary transformation]. If we construct the unitary

operator as a power series in the total angular momentum J and other parameters, then the

transformed hamiltonian will be a power series similar to the original hamiltonian, but with

coefficients depending on the parameters in the unitary transformation. Because these

Iparameters are arbitrary, we can choose the unitary operator in such a way as to eliminate as

I many terms as possible from the transformed hamiltonian. The coefficients of the remaining

terms are the maximum number of terms which can be determined from the experimental data.

3 The situation is not quite as simple as described above, but we can still make a meaningful

transformation by considering orders of magnitudes of various coefficients involved, and

discarding terms which may be negligible. Details of this process can be found in Reference [4].

A hamiltonian subjected thus to a unitary operation is called a reduced hamiltonian.

We wish to construct a reduced hamiltonian I- rot with the same eigenvalues as H rot"

3The reduced hamiltonian is given by

H' = UH rotU- (A-93)

Recall that the most convenient form for a unitary operator is

U= exp (i S) (A-94)

where S is hermitian. To make H invariant under time reversal, we must make U invariant,

I which requires that S change sign under time reversal. Therefore, if we express S as a power

3 series similar in form to Equation (A-85), we see it has real coefficients and contains powers of

p+q+r=odd only.

p q qp

Spqr zJz (A-95)
I p+q +r

odd
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The exact structure of S, and therefore of U,depends on the symmetry of the molecule in question.

]etails of the arguments and exact forms of U and S can be found in Reference [4].

As a result of these arguments it has been shown that for molecules of orthorhombic

I symmetry, the hamiltonian of Equation (A-91) can be transformed to an analogous form If rot by

* the following changes in coefficients

B' x = B x 4(By- BZ)Sli

xx = T xx

I T' =
(D ~ ~ ~ ~ x ITxDy-2(B x- B ( y)Sll-(Bny~

i Xxz = X, + 2(B x - B z)S311  
+ 4( xx -TW .)s111  - 4(Bx - B Z) S A21

ID / XYZ= (D XYZ - 6[(B y- B O)S 311 + (B z- B J)S 131 + ( B x - B Y)S 113]

where S S ll ' S 131 , and S 113 are coefficients from Equation (A-95)

Srot of Equation (A-92) can also be transformed to an analogous form H rot by making

3 the coefficient transformations indicated in Table A-2. Note the coefficients S 1ll, S 311,

S 131 and S 113 have been replaced by the parameters P, X, P and V which are also defined

I in Table A-2.

I
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TABLE A-2
Coefficients of the Transformed Hamiltonian. From [4] [p. 331.

B' 200  B 200 +4p B' 020  B 020 -14p B 002  B 002 + 4a rp

T400 '= T4 -2p T 220 =T 220 + 12p T'040 -T040 + p

T 202 =T 202 T' 022 =T 022 -4p T' 00 4 =T04 + P

600 =D600 -

O 420 =  
420 + 6X -3

3 240 = I240 - 5?, = 10g

t 60  D 0 60 - 7g

402 = 402 V

D222 = D - 2cy + v+ (-2T + 202 -8T 16p)p

222 B 002i [-4T0 +4aT +i8T0 .- 8( o2-3) pp

(I'4 042 - 2yGI - 9V+ I4T040 +;T022 +T004 ] (;_)I

* B002

cD' +~ x
204 204 2

I , (-4T 0.2 +16cT 004 +16p)p

024 024 - 83V + B
* 002

'D 006 = D 006 + V

p = B 002s 111 B 2s 113 - s 311 -S + 2T022 s 11, - 2B 12
0'J2\131) 2 i 020 ill

X = B 002 (S311 + S$131) + 2T202 S1 11

V= - +B S2 B 020
4 W (S 311 4131 004s +  002 111 B 002

109I



The reduction of the rotational hamiltonian is completed by making appropriate

reductions of certain coefficients which will fix the parameters P, J,, and V. Because

SF20 2 approaches the symmetric prolate limit, we need to consider a reduction that stays finite

in this limit. The choice we make is called the asymmetric top reduction or the S-reduction.

* This reduction is obtained by the conditions

022 =02 042 = 024 = 0 (A-97)

These conditions are solved to give the values of P, X. gand V given in Table A-3.

i The form of the S-reduced hamiltonian is

(S) 2 (S) 2 (s)2 2

,s B)J x - y J y BHrot  Bx 2+ +B - D (J2) J' B + BzD z

+d 1 J2(j2+j2)+d 2 (J4+J4) +H2(J 2 ) 42 2 4
+j2 )2 (j2 +j K2) 2(

S+HKJz+hl(J)2(J2 +J2) +h 2 J 2 (J4+J4) h 3 (J.+J) (A-98)

3 The relationship of the coefficients in Equation (A-98) to coefficients from previous expressions

of I- is given in Table A-3.

rot0

I
U
I
i
I
I
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U TABLE A-3

3 Constants of the S-Reduced Hamiltonian. From [4] [p. 351.

Bx) = B x -4T 04 + (2 + ;-1)T022
S() = B - 4T4 _(2 -- )T022

I Bs )  z+6004 50- 2

= Z 2 002

D = 1 - =T +3' - T D =T 5 -1-D 004 - 2 002 JK 220 002 K 040  022

3 d = T 20 2  d2=T00 4 + icr-1T HJ =() -X

- 004 4 02" 0

H JK = (D420 + 6L - 3 t HKj = D240 - 52L + 10g HK =60 - 7p

h1 =D402 -v h2= (D+4 h 3 =D 006 +v
2 2 0 2

! 1 i-1 oT022

1= (2c72 + L7)-1{ 20 + [-2T°40 +(c5 2 +3)T°22 - 5°YT00 1 0223 161 042 8 024 L0002 0~B 0 }
V= 2 6a-IJ+ l-1) + V004 T022

16 8 024 B0 20

=5&-1 + - + (7-1 D 2 +(-T2 2 + T T -1 2 0

2 7 O  T220 2 202 GT022 _ 2aIT T020B020

!

I
I
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I Appendix B
Wave Equation Solution For The Symmetric

3 Top12
U

The motion of a symmetric top is usually described by the Euler angles (see Figure B-1).

* zu z
II

I'

II
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~~~~~~~. ...: ii--i:i:ii.. :ii:...::::::::::::: ...... i...

x I ~. ................ ....... :........ ... iiiii
... .. .. .... ...... .

.. .. ..... .. ,. -. . . .. -,....%.o ,o ,,.
. , .,.... o,..-. .. ... "°" °" "

. ... .. ... , '. .-...... .... . '..'.'..:'':::''

5 X

........ [pp 28 -2 61

• :':':......:" " .':::::::: ::: ...... ......... ..... .

""'" "''"''""' ....... .... .. ::::::::::::
..............

IX

Figure B-1 -2he Euler angles. From [25] 1p. 78 1.

!Now let _r be an arbitrary vector having Cartesian compone: ,s r F = (rx/r /rz) in the

space-fixed (lab) frame and the Cartesian components rg = r x/ryfrz) in the body-fixed

i 12The theory of Appendix B is taken from the following references: 121 [pp. 6G-611; [251 [pp.77-831;i',[ J1 [pp. 285-286].
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(molecular) frame. Since we are describing the rotation of the syn,-aetric top by the Euler angles,

3 the two representations of the vector r are related by the unitary transformation (D

I rF= X ) Fg (O0',) rg
8

i r8 = YogF(O,O,X)rF (B-)

F

where (D is cafled the direction cosine matrix. Naturally we express the opei-tor (

by the product of the three Euler angle rotations (see Figure B-2)

I (o,0,x) R z N(o)R z( ) (B-2)

I

I
I
!
i
i
I
I
I
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I 1 z

IY x

Original Frame Final Frame

, Zz' zoo Z

! 4 / * 4

XX7"f
| v x

FOiga - Cm p leFion Fr m e

Sic wecnrp ;n h u .- nlsa h!podc oftreroain, wecnz id'I

e i, ,- ' ,,

-. xo- , a i.e.
1 1.

I Figure B-2 - Components of Euler Angle Rotations. From [25] [p. 79].

ISince we can represenr the Eule, ingles as th2 product of three rotations, we can find the

I relationship betwe~en r F, and rg to be as depicted in Table B-I. Bocauise the gFare the reai

t elements of a unitary transformation, (1)- 1 = cI)g That means the transformation is

orthonormal, i.e.

I
U
U
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Uz
* z

0 0
xiI'* Y x

Original Frame Final Frame

! Z,z ' Z, z,
-- -"

I. y

.. ..'."
-, ..

"~~~~ - . - \ ,'

3 R j) R4 0) R Z(X)

3 IFigure B-2 - Components of Euler Angle Rotations. From [25J [p. 791.

I Since we can repre:;enr the Eule, ingles as the product of three rotations, we can find the

3 relationship between rF and rg to be as depicted in Table B-1. Because the 0gF are the reai

elements of a unitary transformation, c-g = IFg That means the transformation is

orthonormal, i.e.

1
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Ug (D Fg 9 (B-3)
F F g g

and Table B-1 can be read either across or down. The entrics in Table B-i are the cosines of the

angles between the various pairs of axes.

5 Table B-i

Direction Cosines Relating Rotating to Nonrotating Axes as Functions Of Eularian Angles.

_________________ From fI I f p. 2861. _ _ _ _ _ _ _ _

_ _ I__ _ __ z

x Cos 0Cos (PCos X 1Cos 0sin 0cos X -sin Ocos

_________ sin (bsin X +Cos d~sinx

y Cose0Cospsin X, -cos Osin osin X sinsinX~

U I__________-sill suCos + Cos ocos x _______

z sin 0cos o sin, sino Cos 0

By examining Figure B-1 we deduce the following relations

A A
n, = n

A A +A

no 0 nl Sifl9+fl Cos9 (B-4)

r; = n Xsin 0cos 0+ n sinesin n zCose0

I By noting that the projection of the angular momen.,'rn J on an arbitrary axis is the operator

which generates an infinitesimal rotation Ctn about I I, that is
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Fg (F'g FF'S

XDFg DFg ' gg (B-3)

F

and Table B-I can be read either across or down. The entrics in Table B-1 are the cosines of the

angles between the various pairs of axes.

Table B-1

Direction Cosines Relating Rotating to Nonrotating Axes as Functions Of Eularian Angles.

From I [p. 286.

x cos 0coscos X cos sinocosX 1 -sin0cos "

L -sinosinTX +Cos .bsinx i __

y Cos 0 Cos P sin X; - cos Osinosin X sinesinX

-sinocos 7 + cos 0cos X __

z sin Ocos o sin 0 sin , cos 0

By examining Figure B-1 we deduce the following relations

A An =no z

A A +A

n. = n x sino n Y Cos ( (B-4)

A A A

r = nsin Ocs 0+ nsin0sind)+ n Cos

By3 n:oting that the projection of the angular momen,,,m J on an arbitrary axis n is the operator
A

which generates an infinitesimal rotation -n about n that is
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A= h B- h h-8'2I a -"821, -82c (B-10)
Sr la 8,,1 8[

I Equation (B-10) implies

A > B > C (B-11)

For a symmetric prolate top we identify the symmetry axis (z-axis) as the a-axis, and the other

two axes as the b-axes. This gives us the hamiltonianI
H= Bj 2 +Jz(A - B) (B-12)

I2 2
We use the hamiltonian (B-12) in the Schroedinger equation. We can calculate J and J z

3l from Equation (B-7)

2= 1a si 0 ) 1 a2 2cos9 0 '3 1 a 2
iL(insin 20 ao2  sin 20 Tar sin 2e X

a (B-13)

Upon substitution into Schroedinger's equation we get

Sia 3jie._2+ cos2o a 2cos 0 a 2

L~0  sin 0-0 E (B-14)
2 ari Do} 2 2 2 B., 2 2 X hjLsin 'sin 0 ao sin- 0 OX sin 0 "- "

We assume a solution of the form

II= e( 0)e iMOeiK. (B-15)

where M anc' K must be integers to preserve the periocity of the solution. e~(0) must now satisfy

the equation
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3 ( 0__) [ M (cos 0 _e A)2 (12cas\M + E l
sn si dO sin0 si 20 +B sin 20 h J 0

3 (B-16)

By letting

x=-(1- Cos 0) (B-17)

we get

I
IK-M!( IK+MI

E)((0) = x2 0 - x) - FWx B-S

where F(x ) is a polynomial in x.We find the equation for F(x ) to be

x( - x)F"(X) + (c - 13x)F'(30 + yF(x) = 0 (B-19)

where

I K
a =,K - M!+ iI

I=K + M! +K - MI + 2 (B-20)

AK 2I : 'Y= + -- K ,, (11K + M,,_ _I! -M) (,< j,-! +,, ,+I B 0 2 A 2 22

Equation (B-19) can be solved by normal power series methods. By letting F()= W an x n we
n-O

get the recurrence relation

a [(n)(n+ nc (B-21)

3 For a physical solution the recurrence relation must ierminate which means we get for the energy
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3E = BJ(J + 1) + (A - B)K 2  (B-22)

where

U-j +~na ~~ MI + IK -MI (-3

and n~ max is the largest value- of the integer n for wh~ch the recurrence relation (B-21) does nct

vanish. Note from Equation (B-23) that J(the total angular momentum) must be a positive

integer such that

Ij

K K 0,±i±2..,J (B-24)

Finally, note that K and M represent the Projection of the total angular wmzrnentum J onto the

space-fixed (lab) axis and the molecule-fixed Z axis (axis of symnmetry) respectively.
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